Number Systems and Fractals, Gary Michalek

The talk will explain a nice connection between the two fields of algebra (specifically modular arithmetic) and topology (specifically fractals). The basic idea is this: you can write any positive integer in base 3 using the symbols $A=\{0,1,2\}$, and therefore any integer can be written using the symbols $A-A=\{0,1,2,-1,-2\}$. But what happens if you change the coefficients of powers of three to other numbers, e.g. $A=\{0,7,17\}$. Can every integer be expressed as sums of powers of 3 with coefficients in $A-A=\{0,7,-7,17,-17,10,-10\}$? (The answer is yes). I proved a theorem that shows which sets of coefficients work (are number systems) and which don't, both in base 3 and later for any integer base N. There is a conjectured theorem for the more complex case of Gaussian integers, base $1+4 i$, for example. This is the algebra side of the talk. The set A as described above also corresponds to a fractal (if you use A for coefficients of powers of $1 / 3$ or $1 / N$ in general, where N is a real or complex integer). The fractal is the fixed point of an iterated function system. Whether or not A is a number system is reflected in a nice topological property of the fractal that A creates (there are pictures!). This might be interesting in general to mathematicians but also for teachers of mathematics who would like examples for their courses in algebra or topology.

