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The Petersen-Morley Theorem
J.M. Selig
At a recent talk Morley’s theorem was mentioned. This theorem concerns
triangles, a subject that was very important for my Ph.D. many years ago.
But while googling the theorem and its discoverer/inventor Frank Morley I
came across the Petersen-Morley theorem also called the Hjelmslev-Morley
theorem. This theorem concerns an arrangement of lines in space, a subject
that is much closer to my more recent interests.

Theorem. (1897) If `a, `b, `c are three general skew lines in space, if
`bc, `ca, `ab are the lines of shortest distance respectively for the pairs
(`b, `c), (`c, `a) and (`a, `b), and if `a(bc), `b(ca) and `c(ab) are the lines of
shortest distance respectively for the pairs (`a, `bc), (`b, `ca) and (`c, `ab),
then there is a single line meeting at right angles all of `a(bc), `b(ca) and
`c(ab).

This looks like a theorem that is going to need a lot of construction lines
and diagrams to prove, but I think it can be done with some fairly simple
algebra. There is quite a bit of preparation to be done first, but the key is
knowing about lines and how to represent them with Plücker coordinates.

A line in space can be conveniently specified by its direction and mo-
ment. The direction of the line is given by any vector parallel to the line,
~ω say. If ~p is the position vector of any point on the line then the moment
of the line is given by,

~v = ~p× ~ω.

Notice that, any other point on the line would be represented by a position
vector ~p+ λ~ω for some constant λ, and hence would give the same moment
vector since,

(~p+ λ~ω)× ~ω = ~p× ~ω.

There is another way to look at these coordinates for a line, this time
we consider lines in the projective space P3. A point in this space has
homogeneous coordinates p̃ = (p1 : p2 : p3 : p0) and the line joining two
such points p̃ and q̃ has Plücker coordinates,

Pij = piqj − pjqi, i, j = 0, 1, 2, 3

clearly Pii = 0 and Pij = −Pji, so there are only 6 independent coordinates.
The connection with the direction-moment description becomes clear if we
restrict attention to an affine patch of P3 by setting p0 = q0 = 1 and
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assuming that p1, p2 and p3 are the x, y and z coordinates respectively of
the points. Then we can see that the direction vector of the line is,P01

P02

P03

 = ~ω and

P23

P31

P12

 = ~v = ~p× ~ω

is the moment of the line. We can write the Plücker coordinates of a line
as a 6-vector,

` =


P01

P02

P03

P23

P31

P12

 =

(
~ω

~p× ~ω

)

Not all of these 6-component vectors represent lines in 3-dimensions. Given
an arbitrary 6-D vector,

s =


Q01

Q02

Q03

Q23

Q31

Q12

 =

(
~ω
~v

)

this represents a line in space if,

~ω · ~v = Q01Q23 +Q02Q31 +Q03Q12 = 0.

This relation can be written as,

sTQ0s = 0

where Q0 is the 6× 6 matrix,

Q0 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =

(
0 I3
I3 0

)

and I3 is the 3× 3 identity matrix.
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Now, suppose we have 2 lines in space `1 and `2, and we take the
product,

`T1Q0`2 =
(
~ωT
1 (~p1 × ~ω1)T

)( 0 I3
I3 0

)(
~ω2

~p2 × ~ω2

)
=

~ω·(~p2 × ~ω2) + (~p1 × ~ω1) · ~ω2 = (~p1 − ~p2) · (~ω1 × ~ω2).

Notice that this quantity vanishes if and only if either: the lines are parallel
(~ω1 × ~ω2 = 0), or the lines meet (~p1 = ~p2). This can be summarised as:
`T1Q0`2 = 0 if and only if the lines `1 and `2 are co-planar.

The condition for the lines to be perpendicular is then just,

`T1Q∞`2 = 0

where,

Q∞ =

(
I3 0
0 0

)
.

So lines meet at right-angles if and only if both,

`T1Q∞`2 = 0 and `T1Q0`2 = 0.

The 6-dimensional vectors, all of them not just the lines, have a useful
interpretation as the Lie algebra to the Lie group of proper rigid-body dis-
placements in space. This Lie group is usually denoted SE(3), standing for
the special Euclidean group in 3D.

A Lie algebra is a vector space with an anti-symmetric product that sat-
isfies the Jacobi identity. Often the product will be the matrix commutator,
which is anti-symmetric and automatically satisfies the Jacobi identity. The
commutator of two matrices A and B is given by,

[A, B] = AB −BA

and it is clear that this is anti-symmetric, [A, B] = −[B, A]. Then comput-
ing the triple product of three matrices A, B and C we have,[

A, [B,C]
]

= ABC −ACB −BCA+ CBA,[
B, [C,A]

]
= BCA−BAC − CAB +ACB,[

C, [A,B]
]

= CAB − CBA−ABC +BAC.

Summing these three commutators gives the Jacobi identity since all the
terms on the right-hand-side will cancel,[

A, [B,C]
]

+
[
B, [C,A]

]
+
[
C, [A,B]

]
= 0
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In our case six dimensional vectors can be represented by 4×4 matrices,

s =


Q01

Q02

Q03

Q23

Q31

Q12

 =

(
~ω
~v

)
−→

S =


0 −Q03 Q02 Q23

Q03 0 −Q01 Q31

−Q02 Q01 0 Q12

0 0 0 0

 =

(
Ω ~v
0 0

)

Here, the matrix Ω has the property that Ω~u = ~ω × ~u for any vector ~u. A
straightforward but tedious calculation shows that the commutator of two
such matrices corresponds the following product of 6-vectors,

[S1, S2] −→ s1 × s2 =

(
~ω1 × ~ω2

~ω1 × ~v2 + ~v1 × ~ω2

)
.

Traditionally, these 6-vectors are called twists and can be used to represent
the generalised velocity of a rigid-body. The vector ~ω is the instantaneous
angular velocity of the body and ~v is the linear velocity of a point on the
body that is instantaneously coincident with the origin of out coordinate
system. The commutator operation on the twists is called the vector product
of twists, hence the overloading of the × operator. A twist can be viewed
as a line with a pitch. That is, a general twist can be written as,

s =

(
~ω
~v

)
=

(
~ω

~p× ~ω + h~ω

)
where h is a scalar known as the pitch of the twist. The pitch of an arbitrary
twist can be computed as,

h =
sTQ0s

2 sTQ∞s
.

If the pitch of a twist is zero then the twist is a line that is an instantaneous
pure rotation about the line. If sTQ∞s = 0 the twist is said to have infinite
pitch. Every twist has an axis, that is an associated line. The axis of an
arbitrary twist is given by,

` =

(
~ω
~v

)
− sTQ0s

2 sTQ∞s

(
~0
~ω

)
.
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Suppose that s1 and s2 are arbitrary but finite pitch twists. The axes
of these twists will be written, as `1 and `2 respectively. That is,

s1 =

(
~ω1

~p1 × ~ω1 + h1~ω1

)
with axis `1 =

(
~ω1

~p1 × ~ω1

)
and similar for the other twist. Now the two lines `1 and `2 will meet
perpendicularly if and only if the twists satisfy,

sT1Q∞s2 = sT1Q0s2 = 0.

To see this first assume that the twists satisfy the relations above. From
sT1Q∞s2 = 0 we have that ~ω1 · ~ω2 = 0 and so the lines `1 and `2 are
perpendicular. Then sT1Q0s2 = 0 simplifies to,

sT1Q0s2 = ~ω1 · (~p2 × ~ω2) + ~ω2 · (~p1 × ~ω1) + (h1 + h2)~ω1 · ~ω2 =

~ω1 · (~p2 × ~ω2) + ~ω2 · (~p1 × ~ω1) = 0

and hence `T1Q0`2 = 0, implying that the lines meet. On the other hand,
if the lines are perpendicular we have that sT1Q∞s2 = 0 and then since the
lines meet `T1Q0`2 = 0 can be extended by adding a multiple of ~ω1 · ~ω2 to
show that sT1Q0s2 = 0.

Next we look at the two scalar triple products,

sT1Q∞(s2 × s3) = ~ω1 · (~ω2 × ~ω3)

and

sT1Q0(s2 × s3) = ~v1 · (~ω2 × ~ω3) + ~v2 · (~ω3 × ~ω1) + ~v3 · (~ω1 × ~ω2).

Note that both of these are cyclically symmetric so that we have,

sT1Q∞(s2 × s3) = sT2Q∞(s3 × s1) = sT3Q∞(s1 × s2)

and
sT1Q0(s2 × s3) = sT2Q0(s3 × s1) = sT3Q0(s1 × s2).

These last two results allow us to say something about the common
perpendicular to lines. Let `a and `b be two general lines in space, the
common perpendicular to these lines is given by the axis of the twist `a×`b.
To see this, note that the product `a×`a is not necessarily a line, it is usually
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`

`a

`b

`c

`ab
`ca
`bc

`c(ab)

`a(bc)

`b(ca)

Figure 1: The Petersen-Morely Configuration.

a twist with a finite pitch. However the cyclic property of the triple products
and the anti-symmetry of the commutator, imply that,

`TaQ∞(`a × `b) = 0, `TaQ0(`a × `b) = 0

and also that

`Tb Q∞(`a × `b) = 0, `Tb Q0(`a × `b) = 0.

Hence we see that `a meets and is perpendicular to the axis of `a × `b and
similarly `b meets and is perpendicular to the axis of `a × `b. If we call `ab
the common perpendicular to the lines `a and `b then `ab is the axis of the
twist `a × `b.

In a similar fashion `a(bc), the common perpendicular to the lines `a
and `bc, is the axis of the twist `a × (`b × `c). The line `a meets and is
perpendicular to the axis of `a × (`b × `c) because,

`TaQ∞
(
`a × (`b × `c)

)
= `TaQ0

(
`a × (`b × `c)

)
= 0.

Also `bc meets and is perpendicular to the axis of `a × (`b × `c) since `bc is
the axis of the twist `b × `c and

(`b × `c)TQ∞
(
`a × (`b × `c)

)
= (`b × `c)TQ0

(
`a × (`b × `c)

)
= 0

We now have all the ingredients to prove the theorem.
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Proof. (Petersen-Morley Theorem) Let ` be the line that meets and is per-
pendicular to both `a(bc) and `b(ca). This means that we have the relations,

`TQ∞
(
`a × (`b × `c)

)
= `TQ0

(
`a × (`b × `c)

)
= 0

and
`TQ∞

(
`b × (`c × `a)

)
= `TQ0

(
`b × (`c × `a)

)
= 0.

Now from the Jacobi identity we have,

`c × (`a × `b) = −`b × (`c × `a)− `b × (`c × `a).

Hence, by the linearity of matrix multiplication we must have,

`TQ∞
(
`c × (`a × `b)

)
= `TQ0

(
`c × (`a × `b)

)
= 0.

So we can conclude that the line ` meets and is perpendicular to `c(ab).

This proof seems quite satisfying to me. There is no diagram of the
lines only algebra. In fact it is not straightforward to draw a diagram of
the lines. In figure 1 such a diagram is shown but I wouldn’t claim that it’s
very clear. The blue lines in the diagram are the original arbitrarily chosen
lines, Their common perpendiculars are shown in green. The yellow lines
are the common perpendiculars to the original lines and the green lines and
the red line is perpendicular to the three yellow lines.

According to Tabachnikov, [6] this theorem is a generalisation to 3 di-
mensions of the well known theorem that the altitudes of a Euclidean trian-
gle are concurrent. Tabachnikov also notes that Arnold pointed out that the
analogous theorem for spherical triangles was simply an application of the
Jacobi identity in the Lie algebra to the rotation group, so(3). The original
theorem seems to have been proved using projective geometry [5, 1]. But in
1936 Todd used Study’s dual vector formulation of line geometry to prove
the theorem again, [7]. Todd’s proof is quite similar to the one given here
but the connection to the Jacobi identity was not made there.

In figure 1 there are 10 lines and 15 points where two lines intersect.
There are three points on each line. This is an example of a combinatorial
structure known as a configuration or regular uniform design. The incidence
relation between the lines and points can be illustrated with a Levi graph,
see figure 2. In the figure the filled nodes correspond to lines and the empty
nodes to intersection points, edges join lines to the points that lie on them.

Finally a few words about Petersen and Morley. Frank Morley (1860–
1937) was born in Woodbridge, Suffolk. After studying Maths at Cambridge
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`a(bc)
`

Figure 2: The Levi Graph of the Petersen-Morley Configuration.

he moved the U.S. teaching first at Haverford College in Pennsylvania and
then as chair of the Maths dept. at Johns Hopkins University. He supervised
some 50 Ph.D. students and published several text books. For over 30
years he was editor of the American Journal of Mathematics. He served as
president of the American Mathematical Society in 1919–20. He is probably
best known for his theorem on the meets of the trisectors of the angles in
an arbitrary triangle, [2]. For a fuller biography of Morley see [4].

Johannes Trolle Petersen (1873–1950) was born in Hørning near Aarhus,
Denmark. From 1917 to 1942 he was professor of mathematics at the Uni-
versity of Copenhagen serving as principal for the year 1928–29. He worked
in the areas of descriptive geometry and line geometry. In 1904 he changed
his name to “Hjelmslev”, the district he was born in. This was to avoid
confusion with the graph theorist Julius Peter Christian Petersen. His son
Louis Hjelmslev became a well known linguist. This biographical informa-
tion was taken from [3].
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