The Chinese Remainder Theorem Suppose n_1, n_2, \ldots, n_r are mutually coprime positive integers (that is, no integer greater than 1 dividing one may divide any other.) Let y_1, y_2, \ldots, y_r be any integers. Then there is a number x whose remainder on division by n_i is y_i, for each i. That is, the system of linear congruences $x \equiv y_i \pmod{n_i}$ has a solution. Moreover this solution is unique modulo $N = n_1 \times n_2 \times \ldots \times n_r$.

How many people
What is x?

Let $N_i = N/n_i$, for each i. Here, $N = 4 \times 5 = 20$, so $N_1 = 5$ and $N_2 = 4$. There will be a smallest number, the inverse of N_i, denoted by N_i^{-1}, for which $N_i \times N_i^{-1}$ has remainder 1 on division by n_i; we write $N_i N_i^{-1} \equiv 1 \pmod{n_i}$. We find that $N_1^{-1} = 1$, since $5 \times 1 = 5 = 1 \times 4 + 1$. Similarly, $N_2^{-1} = 4$. Now all solutions are congruent, modulo N, to $x = y_1 N_1 N_1^{-1} + y_2 N_2 N_2^{-1} + \ldots + y_r N_r N_r^{-1}$, which for our problem means some multiple of $N = 20$ plus $3 \times 5 \times 1 + 4 \times 4 \times 4 = 79$.

In fact $-1 \times 20 + 79 = 59$ is the correct answer but 79 itself also looks like a possibility for the size of the crowd. We could narrow down the possibilities by dividing the crowd again, into 3s, since 3 is coprime to 4 and 5. Then we get $x \equiv 359 \pmod{60}$, giving 59 and 119 as the nearest choices: 59 must be right!

The Chinese Remainder Theorem dates back at least as early as the 3rd century, where it is used in the Mathematical Manual of Sun Zi. It may be applied when the n_i are not coprime, given suitable conditions on the y_i.
