THEOREM OF THE DAY

The Chinese Remainder Theorem Suppose $n_{1}, n_{2}, \ldots, n_{r}$ are mutually coprime positive integers (that is, no integer greater than 1 dividing one may divide any other.) Let $y_{1}, y_{2}, \ldots, y_{r}$ be any integers. Then there is a number x whose remainder on division by n_{i} is y_{i}, for each i. That is, the system of linear congruences $x \equiv y_{i}\left(\bmod n_{i}\right)$ has a solution. Moreover this solution is unique modulo $N=n_{1} \times n_{2} \times \ldots \times n_{r}$.

How many people
What is x ?

Divided into 4 s : remainder 3

$$
x \equiv 3(\bmod 4)
$$

Divided into 5 s: remainder 4

$$
x \equiv 4(\bmod 5)
$$

Let $N_{i}=N / n_{i}$, for each i. Here, $N=4 \times 5=20$, so $N_{1}=5$ and $N_{2}=4$. There will be a smallest number, the inverse of N_{i}, denoted by N_{i}^{-1}, for which $N_{i} \times N_{i}^{-1}$ has remainder 1 on division by n_{i}; we write $N_{i} N_{i}^{-1} \equiv 1\left(\bmod n_{i}\right)$. We find that $N_{1}^{-1}=1$, since $5 \times 1=5=1 \times 4+1$. Similarly, $N_{2}^{-1}=4$. Now all solutions are congruent, modulo N, to $x=y_{1} N_{1} N_{1}^{-1}+y_{2} N_{2} N_{2}^{-1}+\ldots+y_{r} N_{r} N_{r}^{-1}$, which for our problem means some multiple of $N=20$ plus $3 \times 5 \times 1+4 \times 4 \times 4=79$. In fact $-1 \times 20+79=59$ is the correct answer but 79 itself also looks like a possibility for the size of the crowd. We could narrow down the possibilities by dividing the crowd again, into 3 s , since 3 is coprime to 4 and 5 . Then we get $x \equiv 359(\bmod 60)$, giving 59 and 119 as the nearest choices: 59 must be right!

The Chinese Remainder Theorem dates back at least as early as the 3rd century, where it is used in the Mathematical Manual
of Sun Zi . It may be applied when the n_{i} are not coprime, given suitable conditions on the y_{i}.
Web link: crypto.stanford.edu/pbc/notes/numbertheory; and the history: www.math.harvard.edu/~knill/crt/lib.html.
Further reading: Elementary Number Theory by Gareth Jones and Mary Jones, Springer, Berlin, 1998.

