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Polygonal Numbers

For m ≥ 1, the k-th polygonal number of order m+ 2 is defined to
be

Pm(k) =
m

2

(

k2 − k
)

+ k , k ≥ 0.

From m + 1 vertices of an
(m + 2)-gon, add new ver-
tices along ‘rays’, interpolat-
ing 1, 2, 3, . . . , vertices.
For m = 3, pentagonal num-
bers: 1, 5, 12, 22, . . ..
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Triangular Numbers

For m = 1, the polygonal numbers of order 3 are the triangular
numbers

P1(k) =
1

2

(

k2 + k
)

, k ≥ 0.

The triangular numbers ap-
pear on the 2nd diagonal of
Pascal’s triangle. (The sum of
their reciprocals converges, as
is the case with all diagonals
except the 0th and 1st - Nick
Hobson, M500, Issue 216.)
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Fermat’s Polygonal Number Conjecture

Fermat, in a letter to Mersenne in 1636, asserted that, for all
positive integer m, every nonnegative integer is a sum of m + 2
polygonal numbers of order m + 2

Robin Whitty The Polygonal Number Theorem



Fermat m = 1: Gauss’s Eureka Theorem

Gauss proved the case m = 1 of Fermat’s conjecture on July 10,
1796, as per the following entry in his diary:

Equivalently, if n ≡ 3 mod 8 then n can be written as
n = x2 + y2 + z2 for odd integers x , y , z .
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Tetrahedral Numbers

The third diagonal of Pascal’s triangle are the tetrahedral
numbers, being the number of spheres that can be densely packed
in a triangular pyramid.

The diagonals generally gen-
eralise the triangular numbers
to figurate numbers: tetrahe-
dral, 4-simplex, etc, although
definitions vary.
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Figurate Numbers
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Fermat m = 2: Square Numbers

When m = 2 we have the polygonal numbers of order 4, the
square numbers. Any positive integer may be written as a sum of
at most four square numbers. This was known to Diophantus of
Alexandria and was first explicitly asserted by Claude Gaspard
Bachet de Méziriac,who translated Diophantus’s Arithmetica into
Latin in 1621. The first proof is due to Lagrange in 1770.

Any collection of blocks may be arranged as a square pyramid of
height at most 4 blocks. E.g. 23 = 32 + 32 + 22 + 12.
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The Fifteen Theorem
In 1993, John Conway and his student William Schneeberger
proved:

If a positive-definite quadratic form defined by a
symmetric, integral matrix takes each of the values 1, 2,
3, 5, 6, 7, 10, 14, 15, then it takes all positive integer
values.
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Waring’s Problem

Coincidentally with Lagrange’s proof of the four-squares theorem,
Edward Waring proposed (and, in 1909, Hilbert confirmed,
nonconstructively):

For each positive integer k, there is a positive integer
g(k) such that every nonnegative integer may be written
as a sum of at most g(k) integers raised to power k.

E.g. 23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13: one of only
two cases where g(3) = 9 nontrivial cubes are required. It is
thought that six are sufficient for large n (G (3) = 6).

Theorem (1940s): If
{(

3
2

)

n
}

≤ 1−
(

3
4

)

n

, where { . } denotes the
fractional part of a real number, then

g(n) = 2n +

[(

3

2

)

n
]

− 2,

where [ . ] denotes the integer part of a real number.
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Fermat m ≥ 3: Cauchy’s Lemma

Cauchy (1815) showed that Gauss’s Eureka Theorem implies:

If a and b are odd positive integers satisfying

b2 − 4a < 0 and 0 < b2 + 2b − 3a + 4,

then there exist nonnegative integers s, t, u, v such that

a = s2 + t2 + u2 + v2 and b = s + t + u + v .

E.g. a = 259, b = 29,

b2 − 4a = 841− 1036 < 0
b2 + 2b − 3a + 4 = 841 + 58− 777 + 4 > 0
259 = 132 + 72 + 52 + 42

29 = 13 + 7 + 5 + 4
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Fermat m ≥ 3: Cauchy’s Theorem

Cauchy (1815): If m ≥ 3 then every nonnegative number can be
written as a sum of at most m + 2 polygonal numbers of order
m + 2.

E.g.
375 = P3(13)+P3(7)+P3(5)+P3(4)+P3(1) = 247+70+35+22+1.
(Recall

Pm(k) =
m

2

(

k2 − k
)

+ k , k ≥ 0.)

Subsequent work, notably by Jean François Théophile Pépin,
constructed explicit order m + 2 polygonal representations for all
integers n < 120m.
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Fermat m ≥ 3: Melvyn Nathanson’s proof

1. Assume that m ≥ 3. Choose an odd positive integer b such
that

1.1 We can write n ≡ b + r mod m, 0 ≤ r ≤ m − 2; and

1.2 If a = 2

(

n − b − r

m

)

+ b, an odd positive integer by virtue of

(1.1), then

b2−4a < 0 and 0 < b2+2b−3a+4. (∗)

2. Invoke Cauchy’s Lemma: If a and b are odd positive integers
satisfying (∗) then there exist nonnegative integers s, t, u, v
such that

a = s2 + t2 + u2 + v2 and b = s + t + u + v .

3. From the definition of a in (1.2), write n =
m

2
(a − b) + b + r

= m

2
(s2 − s) + s + . . . + m

2
(v2 − v) + v + r .
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Fermat m ≥ 3: Nathanson’s proof, the small print

1. Assume that m ≥ 3. Choose an odd positive integer b such
that

1.1 We can write n ≡ b + r mod m, 0 ≤ r ≤ m − 2; and

1.2 If a = 2

(

n − b − r

m

)

+ b, an odd positive integer by virtue of

(1.1), then

b2−4a < 0 and 0 < b2+2b−3a+4. (∗)

For a given n and m an interval for b may be expressed, via the
quadratic formula, purely in terms of n and m. Namely, the
interval [1/2 +

√

6(n/m) − 3, 2/3 +
√

8(n/m)− 8 ] is guaranteed
to be bounded by the zeros of the quadratics and to have length at
least 4 for n ≥ 120m.
Any interval of length 4 must contain two odd integers which
together contain a complete set of residues mod m.
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Nathanson’s Interval
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Legendre’s Theorem (1832)

As n gets larger, the gap between the roots of the two quadratics
in Nathanson’s proof, as illustrated in the preceding slide, gets
larger. This means the congruence b ≡ b + r can be achieved with
smaller and smaller values of r . Eventually r = 0 is always
possible, for odd m, while for even m the least possible r oscillates
between 0 and 1. Since r contributes all the polygonal numbers in
Nathanson’s proof except the first four, this gives an improvement
on Cauchy’s 1815 theorem, due to Legendre:

Let m > 3. If m is odd, then every sufficiently large integer is the
sum of four polygonal numbers of order m + 2. If m is even, then
every sufficiently large integer is the sum of five polygonal numbers
of order m + 2, one of which is either 0 or 1.
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Some links

◮ Nick Hobson, ”Solution 213.1 - Pascal triangle sums”, M500,
Issue 216, pp. 1–2, m500.org.uk/magazine/.

◮ Lagrange’s Four-Squares Theorem at theoremoftheday.org:
www.theoremoftheday.org/Theorems.html#11

◮ Elena Deza and Michel Marie Deza, Figurate Numbers, World
Scientific, 2012. Details and online reviews at
www.theoremoftheday.org/Resources/Bibliography.htm#ElenaDeza

◮ The Fifteen Theorem at theoremoftheday.org:
www.theoremoftheday.org/Theorems.html#79

◮ The Polygonal Number Theorem and Nathanson’s proof are
described here at theoremoftheday.org:
www.theoremoftheday.org/Theorems.html#262
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