THEOREM OF THE DAY

The Polygonal Number Theorem For any integer $m>1$, every nonnegative integer n is a sum of $m+2$ polygonal numbers of order $m+2$.

For a positive integer m, the polygonal numbers of order $m+2$ are the values

$$
P_{m}(k)=\frac{m}{2}\left(k^{2}-k\right)+k, k \geq 0
$$

The first case, $m=1$, gives the triangular numbers, $0,1,3,6,10, \ldots$. A general diagrammatic construction is illustrated on the right for the case $m=3$, the pentagonal numbers: a regular ($m+2$)-gon is extended by adding vertices along 'rays' of new vertices from $(m+1)$ vertices with $1,2,3, \ldots$ additional vertices inserted between each ray.
How can we find a representation of a given n in terms of polygonal numbers of a given order $m+2$? How do we discover, say, that $n=375$ is the sum $247+70+35+22+1$ of five pentagonal numbers? What follows a piece of pure sorcery from the celebrated number theorist Melvyn B. Nathanson!

1. Assume that $m \geq 3$. Choose an odd positive integer b such that

$$
b=29
$$

(1) We can write $n \equiv b+r(\bmod m), 0 \leq r \leq m-2$; and

$$
n=375 \equiv 29+1(\bmod 3)
$$

(2) If $a=2\left(\frac{n-b-r}{m}\right)+b$, an odd positive integer by virtue of (1), then $b^{2}-4 a<0$ and $0<b^{2}+2 b-3 a+4 . \quad$ (*)
$a=259$
$841-1036<0,0<841+58-777+4$
2. Invoke Cauchy's Lemma: If a and b are odd positive integers satisfying (*) then there exist nonnegative integers s, t, u, v such that

$$
a=s^{2}+t^{2}+u^{2}+v^{2} \text { and } b=s+t+u+v .
$$

$$
259=13^{2}+7^{2}+5^{2}+4^{2} \text { and } 29=13+7+5+4
$$

3. From the definition of a in step 1(2), write $n=\frac{m}{2}(a-b)+b+r$
$500-1=\frac{m}{2}\left(s^{2}-s\right)+s+\ldots+\frac{m}{2}\left(v^{2}-v\right)+v+r . \quad 375=247+70+35+22+1$

How can we be sure (1) and (2) in step 1 are possible? We appeal to the quadratic formula, applied to the two quadratics in (*) (plotted for our example on the left). The roots specify an interval $\left[b_{1}, b_{2}\right]$ from which to select the value of b. If $b_{2}-b_{1} \geq 4$, then the interval must contain consecutive odd integers: together they will supply enough modulo values for the equation in 1(1) to be satisfied. Now $b_{2}-b_{1} \geq 4$ is guaranteed for large enough n, specifically $n \geq 120 \mathrm{~m}$. Luckily for all smaller values of n the theorem is known from tabulations made in the 19th century. Step 1 also needs $m \geq 3$; this also is aleady established as explained below.
A typical piece of unproven genius from Pierre de Fermat in 1638. Lagrange proved $m=2$ in 1770 (the Four Squares Theorem). Gauss proved $m=1$ in 1796 (his Eureka Theorem). Finally in 1815 came Cauchy's proof of $m \geq 3$, dramatically shortened in 1987 by Nathanson!
Web link: www.fields.utoronto.ca/programs/scientific/11-12/Mtl-To-numbertheory/ (11.45 on Sunday October 9)
Further reading: Additive Number Theory, The Classical Bases, by Melvyn B Nathanson, Springer, 1996.

