A THEOREM OF THE DAY

The Friedlander—lwaniec TheoremThere are infinitely many prime numbers of the forf#m?, for
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Number theorists are morally certain that any reasonablgnpmial f(xs,..., %), in several positive integer
variables and with integer ctigients, will take infinitely many prime values. Of courenust not factorise over
the rationals, and there are obvious so-called ‘local dont¥’, e.g. f(X) = X(X+ 1) + 2 is excluded because oneof
andx + 1 is even, forcingf (x) to be even. To start with the one-variable linear prototyf{&) = ax+ b produces . 8101, 8837
infinitely many primes if and only i& andb are coprime. Legendre asserted this in 1785; its proof yied&ys later T
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by Dirichlet marks the birth of analytic number theory. Tadka = 4 andb = 1, we see that infinitely many primes
have the form Kk + 1 and these, as asserted by Girard and Fermat in the 17thrgeariprecisely the prime values

of f(x1, X2) = X2 + x3. Although not easy to prove, Dirichlet's result is easy thiage in the sense that the sequence
ax+b,x=1,...,N, accounts for a proportion of aboutdof the sefl, ..., N}. Up to a constant multiple this means [
thatN?* values from({1, ..., N} are produced: we have marked this with the dashed/liaéN on the chart above left.
The polynomiale + x§ is less generous, but the proportion, determined by LandduiRamanujan, is nearly linear: this is marked as the dasheg = KN/ VIn N,
closely shadowing the actual count of integerl representable as? + n?, displayed on our chart up 8 = 10*. Contrast this with the other three polynomials: the
sequences of integer values they produce constitute omactidn ofN® of {1,..., N}, with @ < 1 in each case. Such sequences are known as ‘thin’.

Friedlander and Iwaniec used sophisticated prime ‘sievimgthods to give the first proof that a thin polynomial seqreenould contain
infinitely many primes, inspiring Heath-Brown’s proof thihere are infinitely many primes which are sums of three cubes

Web link: lwaniec and Friedlandewww.pnas.orgcontent94/4/1054.abstragHeath-Brown:projecteuclid.orgeuclid.actgl 485891369
- . ‘ Further reading: Prime-Detecting Sievdsy Glyn Harman, Princeton University Press, 2007.
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