THEOREM OF THE DAY

The Friedlander–Iwaniec Theorem There are infinitely many prime numbers of the form \(m^2 + n^4 \), for positive integers \(m \) and \(n \).

Number theorists are morally certain that any reasonable polynomial \(f(x_1, \ldots, x_t) \), in several positive integer variables and with integer coefficients, will take infinitely many prime values. Of course \(f \) must not factorise, and there are obvious so-called ‘local conditions’, e.g. \(f(x) = x(x + 1) + 2 \) is excluded because one of \(x \) and \(x + 1 \) is even, forcing \(f(x) \) to be even. To start with the one-variable linear prototype: \(f(x) = ax + b \) produces infinitely many primes if and only if \(a \) and \(b \) are coprime. Legendre asserted this in 1785; its proof sixty years later by Dirichlet marks the birth of analytic number theory. Taking \(a = 4 \) and \(b = 1 \), we see that infinitely many primes have the form \(4k + 1 \) and these, as asserted by Girard and Fermat in the 16th century, are precisely the prime values of \(f(x_1, x_2) = x_1^2 + x_2^2 \). Although not easy to prove, Dirichlet’s result is easy to achieve in the sense that the sequence \(ax + b, x = 1, \ldots, N \), accounts for a proportion of about \(1/a \) of the set \(\{1, \ldots, N\} \). Up to a constant multiple this means that \(N^1 \) values from \(\{1, \ldots, N\} \) are produced: we have marked this with the dashed line \(y = N \) on the chart above left. The polynomial \(x_1^2 + x_2^2 \) is less generous, but the proportion, determined by Landau and Ramanujan, is nearly linear: this is marked as the dashed line \(y = KN/\sqrt{\ln N} \), closely shadowing the actual count of integers \(\leq N \) representable as \(m^2 + n^4 \), displayed on our chart up to \(N = 10^4 \). Contrast this with the other three polynomials: the sequences of integer values they produce constitute only a fraction of \(N^\alpha \) of \(\{1, \ldots, N\} \), with \(\alpha < 1 \) in each case. Such sequences are known as ‘thin’.

Friedlander and Iwaniec used sophisticated prime ‘sieving’ methods to give the first proof that a thin polynomial sequence could contain infinitely many primes, inspiring Heath-Brown’s proof that there are infinitely many primes which are sums of three cubes.

Read Chapter 1 at press.princeton.edu/titles/8858.html.