The Friedlander–Iwaniec Theorem

There are infinitely many prime numbers of the form $m^2 + n^4$, for positive integers m and n.

Number theorists are morally certain that any reasonable polynomial $f(x_1, \ldots, x_t)$, in several positive integer variables and with integer coefficients, will take infinitely many prime values. Of course f must not factorise over the rationals, and there are obvious so-called ‘local conditions’, e.g. $f(x) = x(x + 1) + 2$ is excluded because one of x and $x + 1$ is even, forcing $f(x)$ to be even. To start with the one-variable linear prototype: $f(x) = ax + b$ produces infinitely many primes if and only if a and b are coprime. Legendre asserted this in 1785; its proof sixty years later by Dirichlet marks the birth of analytic number theory.

Friedlander and Iwaniec used sophisticated prime ‘sieving’ methods to give the first proof that a thin polynomial sequence could contain infinitely many primes, inspiring Heath-Brown’s proof that there are infinitely many primes which are sums of three cubes.

Web link: Iwaniec and Friedlander: www.pnas.org/content/94/4/1054.abstract; Heath-Brown: projecteuclid.org/euclid.acta/1485891369.

Created by Robin Whitty for www.theoremoftheday.org.