Fermat’s Two-Squares Theorem. An odd prime number \(p \) may be expressed as a sum of two squares if and only if \(p \equiv 1 \pmod{4} \).

Lagrange’s Lemma: \(-1\) is a quadratic residue modulo \(p \) if and only if \(p \equiv 1 \pmod{4} \).

E.g.

\[r^2 \equiv -1 \pmod{11} \] has no solutions. This confirms almost directly that primes of the form \(4n+3 \) cannot be written as a sum of two squares. For if \(p = a^2 + b^2 \) then \(p \) can divide neither \(a \) nor \(b \), otherwise it will divide both (if it divides \(a \) then it also divide \(b^2 \) and hence \(b \)) implying that \(p^2 \) divides \(a^2 + b^2 = p \) which is impossible. Then \(\gcd(a,p) = 1 \) and consequently \(ap \equiv 1 \pmod{p} \) for some \(a \). Multiplying \(a^2 \equiv -1 \pmod{p} \) by \(a \) gives \((aa)^2 + (ba)^2 - p(aa)^2 = 0 \equiv 1 + (ba)^2 \pmod{p} \) : we discover that \(-1\) is a quadratic residue mod \(p \) and Lagrange’s Lemma says that \(p \) has remainder 1 mod 4.

So the ‘only if’ part of the theorem is established. Now we must produce a two-squares representation when \(p = 5, 13, 17, 29, 37, \ldots \). The theory of integer lattices supplies a beautiful general purpose construction. Use Lagrange’s Lemma again to take a positive integer \(r \) satisfying \(r^2 \equiv -1 \pmod{p} \), and define the integer lattice

\[\{ Bx, B = \begin{pmatrix} 1 & 0 \\ r & p \end{pmatrix} \mid x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{Z}^2 \} \].

On the left this lattice is depicted for \(p = 13 \), with \(r = 5 \): it consists of all integer points in two dimensions which are integer-weighted sums of the two basis vectors \((1, 5)\) and \((0, 13)\). A corollary of Minkowski’s Convex Body Theorem says that there is some vector in this lattice whose Euclidean length is strictly less than \(\sqrt{2 \det(B)} \). In our construction this gives

\[|Bx| = \sqrt{x_1^2 + (rx_1 + px_2)^2} < \sqrt{2 \det(B)} = \sqrt{2p}. \]

Squaring, expanding out and factorising:

\[x_1^2 + (rx_1 + px_2)^2 = (px_2^2 + 2rx_1x_2)p + x_1^2(r^2 + 1) < 2p. \]

Now \(r^2 + 1 \equiv 0 \pmod{p} \) by our choice of \(r \), so \((px_2^2 + 2rx_1x_2)p + x_1^2(r^2 + 1) \) is a nonzero multiple of \(p \) which is less than \(2p \), and therefore is exactly \(p \).

This theorem was discovered by Fermat in 1640 and by Albert Girard in 1632, the year of his death. The first published proof is due to Euler in 1754; that given here is an example of Hermann Minkowski’s ‘Geometry of Numbers’, developed in the 1890s.

Web link: csweb.ucsd.edu/classes/wi10/cse206a/lec1.pdf (section 7);