Fermat's Two-Squares Theorem An odd prime number p may be expressed as a sum of two squares if
and only if $p \equiv 1(\bmod 4)$.

Lagrange's Lemma: -1 is a quadratic residue modulo p if and only if $p \equiv 1(\bmod 4)$. E.g. $r^{2} \equiv-1(\bmod 13)$ is solved by $r= \pm 5$, since $(\pm 5)^{2}=$ $-1+2 \times 13$. But $r^{2} \equiv-1(\bmod 11)$ has no solutions. This confirms almost directly that primes of the form $4 n+3$ cannot be written as a sum of two squares. For if $p=a^{2}+b^{2}$ then p can divide neither a nor b, otherwise it will divide both (if it divides a then it must also divide b^{2} and hence b) implying that p^{2} divides $a^{2}+b^{2}=p$ which is impossible. Then $\operatorname{gcd}(a, p)=1$ and consequently $a a^{\prime} \equiv 1(\bmod p)$ for some a^{\prime}. Multiplying $a^{2}+b^{2}-p=0$ by $\left(a^{\prime}\right)^{2}$ gives $\left(a a^{\prime}\right)^{2}+\left(b a^{\prime}\right)^{2}-p\left(a^{\prime}\right)^{2}=0 \equiv 1+\left(b a^{\prime}\right)^{2}-0(\bmod p)$: we discover that -1 is a quadratic residue $\bmod p$ and Lagrange's Lemma says that p has remainder $1 \bmod 4$.
So the 'only if' part of the theorem is established. Now we must produce a two-squares representation when $p=5,13,17,29,37, \ldots$. The theory of integer lattices supplies a beautiful general purpose construction. Use Lagrange's Lemma again to take a positive integer r satisfying $r^{2} \equiv-1(\bmod p)$, and define the integer lattice

$$
\left\{B x, B=\left(\begin{array}{ll}
1 & 0 \\
r & p
\end{array}\right) \left\lvert\, x=\binom{x_{1}}{x_{2}} \in \mathbb{Z}^{2}\right.\right\} .
$$

On the left this lattice is depicted for $p=13$, with $r=5$: it consists of all integer points in two dimensions which are integer-weighted sums of the two basis vectors $(1,5)$ and $(0,13)$. A corollary of Minkowski's Convex Body Theorem says that there is some vector in this lattice whose Euclidean length is strictly less than $\sqrt{2 \operatorname{det}(B)}$. In our construction this gives

$$
|B x|=\sqrt{x_{1}^{2}+\left(r x_{1}+p x_{2}\right)^{2}}<\sqrt{2 \operatorname{det}(B)}=\sqrt{2 p} .
$$

Squaring, expanding out and factorising:

$$
x_{1}^{2}+\left(r x_{1}+p x_{2}\right)^{2}=\left(p x_{2}^{2}+2 r x_{1} x_{2}\right) p+x_{1}^{2}\left(r^{2}+1\right)<2 p .
$$

Now $r^{2}+1 \equiv 0(\bmod p)$ by our choice of r, so $\left(p x_{2}^{2}+2 r x_{1} x_{2}\right) p+x_{1}^{2}\left(r^{2}+1\right)$ is a nonzero multiple of p which is less than $2 p$, and therefore is exactly p. Thus if $a=x_{1}$ and $b=r x_{1}+p x_{2}$ then $a^{2}+b^{2}=p$. In our illustration, left, $x_{1}=3, x_{2}=-1$ and $a^{2}=9, b^{2}=(5 \times 3-1 \times 13)^{2}=4$, with $a^{2}+b^{2}=13$.
This theorem was discovered by Fermat in 1640 and by Albert Girard in 1632, the year of his death. The first published proof is due to Euler in 1754; that given here is an example of Hermann Minkowski's 'Geometry of Numbers', developed in the 1890s.

Web link: cseweb.ucsd.edu/classes/wi10/cse206a/lec 1.pdf (section 7);
Further reading: From Fermat to Minkowski: Lectures on the Theory of Numbers and its Historical Development by Winfried Scharlau and Hans Opolka, Springer, 2010.

