
THEOREM OF THE DAY
Fermat’sTwo-SquaresTheorem An odd prime number p may be expressed as a sum of two squares if
and only if p ≡ 1 (mod 4). Lagrange’s Lemma : −1 is a quadratic residue modulo p if and only if

p ≡ 1 (mod 4). E.g. r2 ≡ −1 (mod 13) is solved byr = ±5, since (±5)2 =
−1+ 2× 13. Butr2 ≡ −1 (mod 11) has no solutions. This confirms almost
directly that primes of the form 4n + 3 cannot be written as a sum of two
squares. For ifp = a2+b2 thenp can divide neithera norb, otherwise it will
divide both (if it dividesa then it must also divideb2 and henceb) implying
that p2 dividesa2 + b2 = p which is impossible. Then gcd(a, p) = 1 and
consequentlyaa′ ≡ 1 (mod p) for somea′. Multiplying a2 + b2 − p = 0 by
(a′)2 gives(aa′)2

+(ba′)2− p (a′)2
= 0 ≡ 1+(ba′)2−0 (mod p) : we discover

that−1 is a quadratic residue modp and Lagrange’s Lemma says thatp has
remainder 1 mod 4.

So the ‘only if’ part of the theorem is established. Now we must pro-
duce a two-squares representation whenp = 5, 13, 17, 29, 37, . . .. The
theory of integer lattices supplies a beautiful general purpose construc-
tion. Use Lagrange’s Lemma again to take a positive integerr satisfying
r2 ≡ −1 (mod p), and define the integer lattice
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On the left this lattice is depicted forp = 13, with r = 5: it consists of
all integer points in two dimensions which are integer-weighted sums of the
two basis vectors (1, 5) and (0, 13). A corollary of Minkowski’s Convex
Body Theorem says that there is some vector in this lattice whose Euclidean
length is strictly less than

√
2 det(B). In our construction this gives
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Squaring, expanding out and factorising:
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1(r
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Now r2 + 1 ≡ 0 (mod p) by our choice ofr, so (px2
2 + 2rx1x2)p + x2

1(r
2 + 1)

is a nonzero multiple ofp which is less than 2p, and therefore is exactlyp.
Thus if a = x1 andb = rx1 + px2 thena2 + b2 = p. In our illustration, left,
x1 = 3, x2 = −1 anda2 = 9, b2 = (5× 3− 1× 13)2 = 4, with a2 + b2 = 13.

This theorem was discovered by Fermat in 1640 and by Albert Girard in 1632, the year of his death. The first published proof is due to Euler
in 1754; that given here is an example of Hermann Minkowski’s‘Geometry of Numbers’, developed in the 1890s.

Web link: cseweb.ucsd.edu/classes/wi10/cse206a/lec1.pdf(section 7);
Further reading: From Fermat to Minkowski: Lectures on the Theory of Numbers and its Historical Development by Winfried Scharlau and
Hans Opolka, Springer, 2010.
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