THEOREM OF THE DAY

Theorem (Fermat's Little Theorem) If p is a prime number, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

for any positive integer a not divisible by p.

Proof:

If all factors are taken modulo p then the product $a \times 2 a \times$ $\ldots \times(p-1) a$ is identical to $1 \times 2 \times \ldots \times(p-1)$ because if $k a=k^{\prime} a(\bmod p)$, for some multiples $k<k^{\prime}<p$, then p divides $a\left(k^{\prime}-k\right)$ and therefore divides one of a and ($k^{\prime}-k$). But p does not divide a, by hypothesis and $k^{\prime}-k<p$. Therefore $a^{p-1} \times(p-1)!=(p-1)$! $(\bmod p)$ so $a^{p-1}=1(\bmod p)$.

Suppose $p=5$. We can imagine a row of a copies of an $a \times a \times a$ Rubik's cube (let us suppose, although this is not how Rubik created his cube, that each is made up of a^{3} little solid cubes, so that is a^{4} little cubes in all.) Take the little cubes 5 at a time. For three standard 3×3 cubes, shown here, we will eventually be left with precisely one little cube remaining. Exactly the same will be true for a pair of 2×2 'pocket cubes' or four of the 4×4 'Rubik's revenge' cubes. The 'Professor's cube', having $a=5$, fails the hypothesis of the theorem and gives remainder zero.
The converse of this theorem, that $a^{p-1} \equiv 1(\bmod p)$, for any a not divisible by p, implies that p is prime, does not hold. The smallest counterexample has the non-prime 561 satisfying $a^{560} \equiv 1(\bmod 561)$. However, a more elaborate test is conjectured to work both ways: remainders add,
so the Little Theorem tells us that, modulo $p, 1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1} \equiv \overbrace{1+1+\ldots+1}=p-1$. The 1950 conjecture of the Italian mathematician Giuseppe Giuga proposes that this only happens for prime numbers: a positive integer n is a prime number if and only if $1^{n-1}+2^{n-1}+\ldots+(n-1)^{n-1} \equiv n-1(\bmod n)$. Jonathan Borwein has shown that any counterexample must have over 4771 prime factors and over 19908 digits!
Fermat announced this result in 1640 , in a letter to a fellow civil servant Frénicle de Bessy. As with his 'Last Theorem' he claimed that he had a proof but that it was too long to supply. In this case, however, the challenge was more tractable: Leonhard Euler supplied a proof almost 100 years later which, as a matter of fact, echoed one in an unpublished manuscript of Gottfried Wilhelm von Leibniz, dating from around 1680.

Web link: artofproblemsolving.com/wiki/index.php?title=Fermat's_Little_Theorem. The cube images are from: www.ws.binghamton.edu/fridrich/.

