THEOREM OF THE DAY

The Fifteen Theorem If a positive-definite quadratic form defined by a symmetric, integral matrix takes each of the values $1,2,3,5,6,7,10,14,15$, then it takes all positive integer values.

\boldsymbol{w}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	
0	0	0	1	$\mathbf{1}$
0	0	1	1	$\mathbf{2}$
0	1	1	1	$\mathbf{3}$
0	0	1	2	$\mathbf{5}$
0	1	1	2	$\mathbf{6}$
1	1	1	2	7
1	1	2	2	$\mathbf{1 0}$
0	1	2	3	$\mathbf{1 4}$
1	1	2	3	$\mathbf{1 5}$

\boldsymbol{w}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	
1	0	0	0	$\mathbf{1}$
0	0	1	0	$\mathbf{2}$
1	1	0	0	$\mathbf{3}$
1	0	1	0	$\mathbf{5}$
1	-1	0	-1	$\mathbf{6}$
1	1	1	0	$\mathbf{7}$
0	1	2	0	$\mathbf{1 0}$
1	1	0	1	$\mathbf{1 4}$
1	1	2	0	$\mathbf{1 5}$

A quadratic form is a sum of products of variables, with each product comprising precisely two variables (possibly the same, in which case the product is a square). It is positive-definite if the result is a non-negative number, no matter what values the variables take. In many cases such a quadratic form may be defined by a square, symmetric matrix, as shown here, and the theorem applies when this matrix has only integer entries (an integral matrix).
Two 4-variable examples are shown here. On the left, the theorem confirms that $w^{2}+x^{2}+y^{2}+z^{2}$ is universal (takes all positive integer values) which is Lagrange's celebrated 'four squares theorem' of 1770. On the right a more elaborate matrix is again confirmed to be universal; for example 1729 (famously the smallest positive integer which can be expressed as a sum of two cubes in two different ways) is given when w, x, y and z take the values, $7,-6,-6$ and 10 , respectively.

The Fifteen Theorem was the astonishing discovery of John Conway and William Schneeberger in 1993. Their complex proof was never published, being superseded in 2000 by the work of a PhD student of Andrew Wiles, Manjul Bhargava. He brilliantly simplified the proof and developed other universality results: for example, a list of 29 integers which guarantees universality even for those positive-definite quadratic forms, e.g., $x^{2}+x y+y^{2}$, which are not defined by a symmetric integral matrix.

Web link: www.fen.bilkent.edu.tr/~franz/mat/15.pdf
Further reading: The Sensual (Quadratic) Form by J.H. Conway with F.Y.C. Yung, The Mathematical Association of America, 1998.

