

Tao.

THEOREM OF THE DAY

The Large Prime Gaps Theorem (a Theorem under Construction!) Let p_n denote the n-th prime

number. Then for sufficiently large X,

 $\max_{p_{n+1} \le X} (p_{n+1} - p_n) \gg \frac{\log X \log \log X \log \log \log \log X}{\log \log \log X}$

	$p_{n+1} \leq A$												10g 10g 10g 1																		
prime	residue	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1 7	18	19	20	21	22	23	24	25	26	2 7	28	29	30
2	1																														
3	1																														
5	3																														
7	6																														
11	2																														
13	1																														
17	12																														
included?		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	×

It is easy to find arbitrarily long sequences of consecutive composite numbers: n! + 2, n! + 3, ..., n! + n, for example. But our theorem concerns $\max_{p_{n+1} \le X} (p_{n+1} - p_n)$, which we denote by G(X), requiring our sequence to be located below a given X. An elegant 'sieving' device makes a start: define Y(x) to be the largest integer y for which one may select residue classes $a_p \mod p$, one for each prime $p \le x$, whose union contains the whole set $\{1, ..., y\}$. Denote by P(x) the product of all primes not exceeding x. Then **Lemma:** $G(P(x) + Y(x) + x) \ge Y(x)$. Use of the Prime Number Theorem and a rough upper bound on Y turns this around

to give $G(X) \ge Y((1+o(1))\log X)$, as $X \to \infty$, (with o(1) being a contribution that becomes vanishingly small). The table above illustrates the definition of Y(x) for x=17 and reveals why the Lemma is true. The residue classes chosen, $a_2=1=a_3, a_5=3$, etc, include every positive integer below 26. In fact, Y(17)=25 precisely, so this is the best we can do. The Lemma works as follows: use the Chinese Remainder Theorem to find a solution m, $17 < m \le 17 + P(17)$, to the congruences $m \equiv -1 \mod 2, m \equiv -1 \mod 3, m \equiv -3 \mod 5, \ldots, m \equiv -12 \mod 17$. Consider m+k, for $1 \le k \le Y(17)$. By definition, $k \equiv a_p \mod p$ for some $p \le 17$, and some residue a_p . But then $m+k \equiv -a_p+a_p=0 \mod p$. So p divides m+k; and $p \ne m+k$ because $p \le x < m < m+k$. So all of $m+1, m+2, \ldots, m+Y(17)$ are composite.

Denote by \log_n the *n*-th iterated (natural) log. The above bound, $G(X) \gg \log X \log_2 X \log_4 X / \log_3 X$, is compared on the right with previous bounds (the ' \gg ' means, roughly, 'up to a constant multiple'; we have used constant = 1). They are dwarfed by Harald Cramér's conjectured $\limsup G(X)/(\log X)^2 = 1$ which is plotted here as a \log_2 to keep it in the picture!

This 2015 advance is due to Kevin Ford, Ben Green, Sergei Konyagin, James Maynard and Terence

Web link: arxiv.org/abs/1412.5029 (the above sieving lemma appears as Lemma 1.1.)

Further reading: The Little Book of Bigger Primes by Paulo Ribenboim, 2nd edition, Springer-Verlag, 2004, Chapter 4.

