
THEOREM OF THE DAY
The Eratosthenes–Legendre SieveLet π(x) denote the number of primes not exceeding x, and P(x)
denote the product of all primes not exceeding x. Then
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whereµ(n) is the Möbius function defined for positive integers n by

µ(n) =
{

(−1)r if n is a product of r distinct primes (with r= 0 if n = 1)
0 if n has a square factor.

How might we count the primes up to 211= 1+ 2× 3× 5× 7? A first
approximation is to count all the integers from 1 to 211 whichare ex-
cluded from the shaded regions of the 4-set Venn diagram on the right:
bottom=multiples of 2; right=multiples of 3; circle=multiples of 5;
central= multiples of 7. Inclusion-exclusion ‘sieves out’ productsof
just the first four primes (# denotes ‘number of’): 211
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Total (as shown in top-left of Venn diagram):49

We have an estimateπ(211)− 4+ 1 ≈ 49, compensating for our four
primes which have been sieved out, and counting the non-sieved non-
prime 1. Legendre’s version of Eratothenes’ sieve is exact,extending
inclusion-exclusion maximally toπ

(
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= |{2, 3, 5, 7, 11, 13}| = 6,
givingπ(211)−6+1 = 42. The Möbius function cleverly converts the
alternating double sum of inclusion-exclusion into a single sum (Our
summation is over all positive integersd which divide P(

√
x ); but

only d ≤ x count since⌊x/d⌋, the greatest integer not exceedingx/d,
becomes zero whend > x.)

Eratosthenes, around 100BC, is credited with inventing
the method of listing primes by sieving. Its adaptation by
Legendre in 1808 to count primes is conceptually behind
all modern sieve-based methods in number theory.

Web link: assets.press.princeton.edu/chapters/s8585.pdf(Chapter 1 of Glyn Harman’sPrime-Detecting Sieves, 1MB).
Further reading: Sieve Methodsby Heini Halberstam and Hans-Egon Richert, Dover, 2011. Created by Robin Whitty forwww.theoremoftheday.org
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