THEOREM OF THE DAY

The Lucas-Lehmer Test The number \(M_p = 2^p - 1 \), for \(p \) an odd prime, is itself prime if and only if it divides \(S_{p-1} \), the \((p - 1)\)-th term in the series: \(S_1 = 4 \), \(S_2 = 14 \), \(\ldots \), and, for \(i \geq 1 \), \(S_{i+1} = S_i^2 - 2 \).

Primes of the form \(2^p - 1 \) must have \(p \) also prime and are called Mersenne primes, after the French monk Marin Mersenne (1588–1648); they are, thanks to the Lucas-Lehmer test, the main focus of searches for large primes. The test is effective because the values of \(S_n \), which quickly become gigantically large, can be remaindered modulo \(M_p \) as they are calculated. Primality testing of \(M_p \), for various \(p \) values, is plotted in the graph above, on a log scale (to base \(e \)) to keep the different plots close together. For \(p = 127 \), for example, the plot climbs sharply with increasing \(S_n \), beginning \(\log(4 + 1) \), \(\log(14 + 1) \), \(\log(194 + 1) \), \(\log(37634 + 1) \), \ldots. By \(S_8 \), the series values far exceed \(M_{127} \) and the remaindering takes effect, keeping the log values steady around 88 \ldots until \(n = 126 \) when, suddenly, we get \(S_{126} \mod M_{127} = 0 \), the plot drops to \(\log(0 + 1) = 0 \), and we discover that \(M_{127} \) is prime. This drop never occurs for \(M_{67} \) and \(M_{257} \) — they were asserted by Mersenne to be prime, but erroneously.

Edouard Lucas (pictured, above left) used this test, although without fully establishing its mathematical credentials, to demonstrate the primality of the 39-digit \(M_{127} \), a colossal achievement for his day. His test was first proved rigorously in 1930 by Derrick H. Lehmer (above right), who initiated the modern study of primality testing.
