THEOREM OF THE DAY

The Green-Tao Theorem on Primes in Arithmetic Progression For any positive integer k there exist infinitely many arithmetic progressions of length k consisting of prime numbers.

10 consecutive primes in arithmetic progression
The image is due to Tony Forbes, a member of the team who found the sequence in 1998

On the left we use a 6×6 grid to locate a sequence of primes equally spaced at distance 6 . Thus $7,13,19$ forms an arithmetic progression with common difference 6 . A longer arithmetic progression is $5,11,17,23,29$. The 210×210 grid on the right shows the record-breaking sequence of 10 consecutive primes in arithmetic progression, discovered in March 1998 by Manfred Toplic, who was part of a one hundred-strong team, using over 200 computers. Instead of starting at 1 in the top-left hand corner, this grid starts with a 93 digit number, since the first prime in the sequence is 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229719.
Note that Green and Tao's theorem, announced in 2004, does not assert that arbitrarily long progressions of consecutive primes must exist. This would be a huge strengthening of their result, already a stunning achievement.

Web links: terrytao.wordpress.com/2009/08: click on the 3rd of Tao's wonderful 2009 Mahler Lectures. Tony Forbes' image is from anthony.d.forbes.googlepages.com/10primes.htm (page opens as an attachment).
Further reading: Elementary Number Theory by Gareth Jones and Mary Jones, Springer, Berlin, 1998.

