THEOREM OF THE DAY

Gauss’s Law of Quadratic Reciprocity For a positive integer \(a\) and odd prime \(p\) not a multiple of \(a\), let the Legendre symbol \(\left(\frac{a}{p}\right)\) be defined by: \(\left(\frac{a}{p}\right) = 1\), if the congruence equation \(x^2 \equiv a \pmod{p}\) is solved by some integer \(x\); otherwise \(\left(\frac{a}{p}\right) = -1\). Then for odd primes \(p\) and \(q\) we have

\[
\left(\frac{p}{q}\right) = \begin{cases}
\left(\frac{q}{p}\right) & p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\
-(\frac{q}{p}) & p \equiv q \equiv 3 \pmod{4}
\end{cases}
\]

The figure shows a long sequence of inversions (via the theorem) and reductions (via the fact that \(\left(\frac{ap+b}{p}\right) = \left(\frac{b}{p}\right)\)) which in this case takes us all the way down to an easily checked case: \(\left(\frac{2}{3}\right) = -1\), i.e. no square has remainder 2 when divided by 3 (Fermat’s Little Theorem is one way of confirming this). There are three reversals of sign in the reduction (where \(p \equiv q \equiv 3 \pmod{4}\)) so the original symbol has value \((-1)^{\frac{3-1}{2}} \times -1 = 1\) and the original quadratic equation has a solution (in fact, solutions come in pairs and \(x^2 \equiv 12007 \pmod{49499}\) is solved by \(x = 16419\) and \(x = 33080\)).

A version of the theorem was conjectured by Leonhard Euler in 1783. Adrien-Marie Legendre responded to the challenge in 1785 and deserves credit for its first full statement (in the form \(\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}}\)). He gave an incorrect proof, however, and was aggrieved when Carl Friedrich Gauss, giving the first correct proof in 1796, claimed the theorem as his own.

Web link: web.nmsu.edu/~davidp/history/#articles offers two articles on quadratic reciprocity (and there is more elsewhere on the same page). The image of Legendre, above left, comes with an interesting little story courtesy of www.numericana.com/answer/record.htm#legendre.