THEOREM OF THE DAY

The Riemann Explicit Formula The number of primes not exceeding a given real number x is given by

$$
\begin{aligned}
& \qquad \pi(x)=R(x)+\sum R\left(x^{\rho}\right), \\
& \text { where the sum is over all zeros } \rho \text { of } \zeta \text {, the Riemann zeta function, and } R(x) \text { is the entire function of } \log x
\end{aligned}
$$ defined by $R(x)=1+\sum_{n=1}^{\infty} \frac{(\log x)^{n}}{n n!\zeta(n+1)} \cdot 1$

Riemann's formula originates in Gauss's empirical observation that the frequency of primes in the vicinity of a number N is 'close' to $1 / \log N$. Summing for N between 2 and x and taking the continuous, calculus version gives the approximation $\int_{2}^{x} 1 / \log t d t \approx \pi(x)$. And indeed the logarithmic integral, denoted by $\operatorname{Li}(x)$, approximates $\pi(x)$ with an error which vanishes proportional to $\pi(x)$, as x gets large (the Prime Number Theorem). Riemann found a better approximation:
$\operatorname{Li}(x) \approx \pi(x)+\frac{1}{2} \pi\left(x^{1 / 2}\right)+\frac{1}{3} \pi\left(x^{1 / 3}\right)+\ldots$,
(the summation being finite since $\pi\left(x^{1 / k}\right)=0$, for $x^{1 / k}<2$). This is very accurate: for example, taking just the first 100 primes $2,3,5, \ldots, 541$, (shown on the right distributed around a logarithmic spiral starting on the outside, with each integer represented by 1 radian of angle) the integral is $\operatorname{Li}(541)=$ $\int_{2}^{541} 1 / \log t d t=107.304 \ldots$ while Riemann's summation is $100+\frac{9}{2}+\frac{4}{3}+\frac{2}{4}+\frac{2}{5}+\frac{1}{6}+\frac{1}{7}+$ $\frac{1}{8}+\frac{1}{9}=107.278 \ldots$. This accuracy is due to Riemann's observation, that k-th powers of all primes $\leq x^{1 / k}$ also populate the locality of N, for every k-th N. Thus the summation in (1).

The approximation (1)

$$
\operatorname{Li}(x) \approx \sum_{k \geq 1} \frac{1}{k} \pi\left(x^{1 / k}\right)
$$

is 'inverted' using the technique of Möbius inversion:
$\pi(x)=\sum_{k \geq 1} \frac{\mu(k)}{k} \operatorname{Li}\left(x^{1 / k}\right)$, (2) where $\mu(n)$ is the Möbius function: $\mu(n)=(-1)^{r}$ when n is a product of r distinct primes, with $n=1$ giving $r=0$, while $\mu(n)=0$ if n has a square factor.
The right-hand-side of (2) is precisely the Riemann function $R(x)$, reformulated as a power series in $\log (x)$ in our statement of Riemann's formula. It converges rapidly and usually approximates $\pi(x)$ very accurately: for our example, $R(541)$ converges to 100 , to the nearest integer, after only 14 terms.
Riemann's final stroke of genius removed even this error, specifying it exactly in terms of the zeros of the ζ function.

Riemann's formula appears in his single monumental paper on number theory dated 1859. His function $R(x)$ was discovered independently by Ramanujan. The power series version of $R(x)$ is due to Jorgen Gram (1884).

Web link: empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/encoding1.htm
\checkmark Further reading: Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, by John Derbyshire, Plume, 2004.

