
Congruent numbers 
(in tribute to Jerrold Tunnell)

Jerrold Bates Tunnell (1950 – 2022)



Jerrold Bates Tunnell

1950: Tunnell was born September 16, in Dallas, Texas 
1972: Graduates from Harvey Mudd College 
1977: PhD in Mathematics from Harvard

“On the Local Langlands Conjecture for GL(2)”, advised by John Tate (Abel prize, 
2010)

1981: The Langlands–Tunnell theorem generalises Langlands' work on the Artin
conjecture and is an important ingredient in Wiles’ proof of Fermat’s Last Theorem

1982–83: Member of Institute of Advanced Study at Princeton
1983: Solves congruent number problem up to Birch & Swinnerton-Dyer conjecture

Joins Rutgers
2010: Fellowship of American Mathematical Society
2022: Dies on April 1 in a cycling accident



Tributes 

I'm devastated to learn of the untimely passing of our longtime Rutgers 
colleague Jerrold Tunnell (1950-2022), apparently from a tragic bicycling 
accident. Jerry was a PhD student of Tate's at Harvard, and is perhaps 
best known for the Langlands-Tunnell theorem, which played a key role 
in Wiles's attack on Fermat's Last Theorem. He was a great colleague, 
always learning new things and teaching new courses, popping in to my 
office to discuss anything from automorphic forms, to dynamical systems 
and ergodic theory. He will be sorely missed. RIP



Next story, a couple of years later. I decide to take algebraic geometry from 
the same Prof; a veteran by now, I sit at the back and take good notes. It's 
a nice fast-paced class, and before we know it the semester is over.
Good news, he says, there is no final exam! Just solve five textbook 
problems from the relevant chapters (I think it was Harris's book --- nice 
and low-brow, no schemes). Manna from heaven, we thought. Which five 
problems, prof?
He says "any five that haven't already been turned in by other students 
before you". We thought he was joking and laughed, ha ha. He was not 
joking.
The next week was hell. The entire class was engaged in squid/hunger-
games, solving the five easiest problems they could find and emailing them 
to our prof, only to discover that many had been solved & submitted 
before by others.
I ended up submitting 12 solutions in all because I had been scooped on 7 
occasions. Remember, the easy problems got done first, so if your early 
efforts got scooped then the remaining problems were much harder!
I was quite frustrated at the time, even after managing to submit my 5 
solutions. But with every passing year, I realise that there were important 
lessons in all this, far more valuable than the algebraic geometry that I'd 
learned in the course.
Why mention any of this now? This prof was Jerrold Tunnell, made famous 
by the Langlands-Tunnell theorem, which formed a key ingredient in 
Wiles's proof of Fermat's last theorem.
I've just learned from @AlexKontorovich that Prof Tunnell passed away a 
few days ago. I haven't even exchanged email with him in well over a 
decade, but somehow the loss seems personal

Here are two stories about my 
graduate school experience at 
Rutgers, both about a man who has 
played a much larger role in my career 
than he realised.

Tributes 

I wasn't a mathematician in my undergraduate years, mostly because 
I disliked whatever little abstract algebra I knew. Of course the first 
class I ever sat through in graduate school was abstract algebra. 
I wanted to pay close attention, so I go right up to the front and 
eagerly await the prof, notebook and pencil at the ready. It's a small 
classroom with maybe about 15 other students.
Prof walks in, right on time, picks up a piece of chalk and booms at 
what I can only imagine is > 100 decibels: "WELCOME TO ABSTRACT 
ALGEBRA!!!" It's the sonic equivalent of being slapped in the face by 
a tornado. Incredibly, the volume only goes up from here.
This class destroyed me in all the right ways. The lectures were very 
well organised and I learned a lot. Very happy to have had the 
experience. But I never sat anywhere near the front of the classroom 
again!

https://twitter.com/AlexKontorovich


Heron Triangles 
A triangle with rational sides and rational area is called a Heron (or 
Heronian) triangle, presumably in connection with Heron’s formula 
for triangle area, which appeared in his Metrica of AD 60:

𝐴 =
1

4
4𝑎2𝑏2 − (𝑎2 + 𝑏2 − 𝑐2)2

where a, b and c are the triangle sides.

Brahmagupta (C7th) constructed all such triangles as those with 
sides proportional to

𝑎 = 𝑛(𝑚2 + 𝑘2)
𝑏 = 𝑚 𝑛2 + 𝑘2

𝑐 = (𝑚 + 𝑛)(𝑚𝑛 − 𝑘2)
where m, n and k are positive integers satisfying

𝑚 ≥ 𝑛 ≥ 1, 𝑚𝑛 > 𝑘2 ≥ 1,
and gcd 𝑚, 𝑛, 𝑘 = 1

E.g. (m,n,k) = (7,6,5) gives (a,b,c) = (444, 427, 221) 
with area 46410.



Digression: plotting Heron triangles

(a,b,c) = (444, 427, 221)

Given (a,b,c) we want to plot the triangle with the minimum 
of fuss and bother. So, like this:

(a,0)(0,0)

cb

P

Now  𝑃 = (𝑏 cos 𝑡 , 𝑏 sin 𝑡) =
𝑎2+𝑏2−𝑐2

2𝑎
, 𝑏 sin 𝑡 by cosine rule.

And sin 𝑡 = 1 −
𝑎2+𝑏2−𝑐2

2𝑎𝑏

2

=
1

2𝑎𝑏
4𝑎2𝑏2 − 𝑎2 + 𝑏2 − 𝑐2 2

=
1

2𝑎𝑏
× 4 × area A of triangle

So 𝑃=
1

2𝑎
𝑎2 + 𝑏2 − 𝑐2, 4𝐴

Note that b and c could be square roots and still be plotted with
rational points



Pythagorean triples
A right triangle with rational sides a <b < c is Heron since area is 

1

2
𝑎𝑏. 

All such triangles have also been constructed (by Euclid) as those with sides proportional to
𝑎 = 𝑚2 − 𝑛2

𝑏 = 2𝑚𝑛
𝑐 = 𝑚2 + 𝑛2

where m, n are positive integers satisfying
𝑚 > 𝑛 and gcd 𝑚, 𝑛 = 1

E.g. (m,n) = (7,6) gives (a,b,c) = (13, 84, 85), with area 546.

Brahmagupta’s construction, for comparison:
𝑎 = 𝑛(𝑚2 + 𝑘2)
𝑏 = 𝑚 𝑛2 + 𝑘2

𝑐 = (𝑚 + 𝑛)(𝑚𝑛 − 𝑘2)
where m, n and k are positive integers satisfying

𝑚 ≥ 𝑛 ≥ 1, 𝑚𝑛 > 𝑘2 ≥ 1,
and gcd 𝑚, 𝑛, 𝑘 = 1.

Exercise: find m,n,k giving right triangle (13, 84, 85).



The oldest unsolved problem in mathematics?

“The congruent number problem, the 

written history of which can be traced back 

at least a millennium, is the oldest unsolved 

major problem in number theory, and 

perhaps in the whole of mathematics.” 

John H. Coates

A positive integer is congruent if it is the area of some right rational triangle

46410

How do we know 46410 is not congruent? (We will see later). We are looking for a practical test to determine if a given 
positive integer is congruent or not.

546

Congruent: area of (13, 84, 85) Not congruent: no right rational triangle 
has this area



Non-square-free congruent numbers are not very interesting

a

b
c

𝛼𝑟2

Τ𝑎 𝑟

Τ𝑐 𝑟

𝛼
ൗ𝑏 𝑟



Why congruent?

The word ‘congruent’ comes from Fibonacci’s use of the term ‘congruum’ to mean the common 
different in a sequence of three rational squares in arithmetic progression.

Any such sequence, 𝑢2, 𝑣2, 𝑤2, with common difference 𝑛𝑠2 corresponds to a right rational 

triangle 
𝑤−𝑢

𝑠
,
𝑤+𝑢

𝑠
, 
2𝑣

𝑠
with area 𝑛.

For example, the sequence ( Τ31 6)2, ( Τ41 6)2, ( Τ49 6)2 is in arithmetic progression with

common difference 5 × 22 and corresponds to the triangle 
3

2
,
20

3
,
41

6
with area 5.

Fibonacci (C13th) discovered that 7 is congruent (5 and 6 were known to 10th century 
Muslim scholars). He asserted without proof that 1 is not congruent.

Fermat, 1640, proved that 1 is not congruent, and therefore that no rational square is 
congruent. He observed that this implies that the equation 𝑥4 + 𝑦4 = 1 has no non-
trivial rational solutions, perhaps inspiring his Last Theorem.

By the way, Fermat also proved that there is no 4-term arithmetic progression 
consisting of rational squares.



1

2

3
4

6

5

Which numbers are congruent?
We can construct all Heron triangles and all Pythagorean triples. But this does not give a 
practical method for determining if a given positive integer is congruent!

E.g. 157 is congruent, but the smallest right rational triangle having area 157 has legs

𝑎 =
6803298487826435051217540

411340519227716149383203
, b =

411340519227716149383203

21666555693714761309610

which is not going to appear quickly during an exhaustive search!

‘Smallest’ triangle implies there are larger ones. Indeed any congruent number is the area of 
infinitely many right rational triangles.

Right rational triangles having area 5



Nevertheless…

Incidentally…

Not Even Wrong blog, April 18, 2022



So how did Bradshaw et al do it (up to BSD)?

1 is not a congruent number because 2𝑥2 + 𝑦2 + 8𝑧2 = 1 and 2𝑥2 + 𝑦2 + 32𝑧2 = 1
both have one solution in integers, namely (0, ±1,0). 

157 is (up to BSD) congruent because 2𝑥2 + 𝑦2 + 8𝑧2 = 157 has twice as many integer 
solutions as 2𝑥2 + 𝑦2 + 32𝑧2 = 157. Namely zero. 

26 is not congruent because 8𝑥2 + 2𝑦2 + 16𝑧2 = 26 has 12 solutions 
±1,±1,±1 , (±1,±3,0) while 8𝑥2 + 2𝑦2 + 64𝑧2 = 26 has 4: (±1,±3,0) .

34 is congruent (up to BSD) because 8𝑥2 + 2𝑦2 + 16𝑧2 = 34 has 8 solutions 
0,±3,±1 , (±2,±1,0) while 8𝑥2 + 2𝑦2 + 64𝑧2 = 34 has 4: (±2,±1,0) .

46410

Not congruent: 
𝑆46410 8,2,16 = 256
𝑆46410 8,2,64 = 160

Our example 
from earlier:



Whereof Birch and Swinnerton-Dyer?

Equations in degree 1 – SOLVED (linear equations)

Equations in degree 2 – SOLVED (conics)

Equations in degree 3 – WIDE OPEN EVEN IN THE SIMPLEST CASE

i.e. elliptic curves  

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

However, we know
• The rational points, together with a point at infinity, form a finitely generated 

abelian group under an appropriately defined arithmetic
• The points of finite order form a finite subgroup
• The points of infinite order form a subgroup isomorphic to ℤ𝑟

• How to calculate r, the rank of the elliptic, provided that Birch and 
Swinnerton-Dyer’s conjectural calculation is valid.



Heron triangles and elliptic curves
There is a deep connection between elliptic curves and rational triangles with integer area



Congruent numbers and elliptic curves
For right-angled Heron triangles, corresponding to congruent numbers, we have a very simple 
mapping between triangles and elliptic curves, shown here for the six rational right triangles of 
area 5 shown earlier:

3

1

2

3
4

5
6

𝑎, 𝑏, 𝑐 ⟺
𝑛

𝑏
𝑎 + 𝑐 ,

2𝑛2

𝑏2
𝑎 + 𝑐

Rational points on the 
curve 𝑦2 = 𝑥3 − 𝑛2𝑥,
for 𝑛 = 5.



Birch and Swinnerton-Dyer and 
Jerrold Bates Tunnell
Tunnell was able to extract, for the special case of the elliptic curves 𝑦2 = 𝑥3 − 𝑛2𝑥, an explicit 
version of the rank calculation of BSD for the case 𝑟 = 0, i.e. the subgroup of rational points on the 
curve of infinite order is trivial, meaning there can be no congruent numbers for the given value of n. 
This took the form of the degree 2 equations specified in his theorem. Enough is known about BSD for 
these equations to give a necessary condition for rank zero. 
Forty years later, going the other way is one of the Clay Mathematics Institute’s $1 million prizes!


