Congruent numbers
(in tribute to Jerrold Tunnell)

Jerrold Bates Tunnell (1950 — 2022)



Jerrold Bates Tunnell

1950: Tunnell was born September 16, in Dallas, Texas
1972: Graduates from Harvey Mudd College
1977: PhD in Mathematics from Harvard
“On the Local Langlands Conjecture for GL(2)”, advised by John Tate (Abel prize,
2010)
1981: The Langlands—Tunnell theorem generalises Langlands' work on the Artin
conjecture and is an important ingredient in Wiles’ proof of Fermat’s Last Theorem
1982-83: Member of Institute of Advanced Study at Princeton
1983: Solves congruent number problem up to Birch & Swinnerton-Dyer conjecture
Joins Rutgers
2010: Fellowship of American Mathematical Society
2022: Dies on April 1 in a cycling accident
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&|ex Kontorowich

@Alexiontorovich I'm devastated to learn of the untimely passing of our longtime Rutgers

colleague Jerrold Tunnell (1950-2022), apparently from a tragic bicycling

o , et : accident. Jerry was a PhD student of Tate's at Harvard, and is perhaps
Distinguishad Vie Prof at @M olathi - i
Editor-in-Chief of Experimertsl best known for the Langlands-Tunnell theorem, which played a key role
Mathemstics - Advisory Board 2t in Wiles's attack on Fermat's Last Theorem. He was a great colleague,
EQuantaMagazine always learning new things and teaching new courses, popping in to my
office to discuss anything from automorphic forms, to dynamical systems
and ergodic theory. He will be sorely missed. RIP

Prof of #Math at ERutgers + 2020-1
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Here are two stories about my
graduate school experience at
Sthetas. Brarngnen Spsnnand - pytgers, both about a man who has
o played a much larger role in my career
than he realised.
| wasn't a mathematician in my undergraduate years, mostly because
| disliked whatever little abstract algebra | knew. Of course the first
class | ever sat through in graduate school was abstract algebra.
| wanted to pay close attention, so | go right up to the front and
eagerly await the prof, notebook and pencil at the ready. It's a small
classroom with maybe about 15 other students.
Prof walks in, right on time, picks up a piece of chalk and booms at
what | can only imagine is > 100 decibels: "WELCOME TO ABSTRACT
ALGEBRA!!!" It's the sonic equivalent of being slapped in the face by
a tornado. Incredibly, the volume only goes up from here.
This class destroyed me in all the right ways. The lectures were very
well organised and | learned a lot. Very happy to have had the
experience. But | never sat anywhere near the front of the classroom
again!

asacc prof @owunimaths; topology,
geomstry & dats scisnce; formerky

G588 sbonnements 4 303 sbonnés

Next story, a couple of years later. | decide to take algebraic geometry from
the same Prof; a veteran by now, | sit at the back and take good notes. It's
a nice fast-paced class, and before we know it the semester is over.

Good news, he says, there is no final exam! Just solve five textbook
problems from the relevant chapters (I think it was Harris's book --- nice
and low-brow, no schemes). Manna from heaven, we thought. Which five
problems, prof?

He says "any five that haven't already been turned in by other students
before you". We thought he was joking and laughed, ha ha. He was not
joking.

The next week was hell. The entire class was engaged in squid/hunger-
games, solving the five easiest problems they could find and emailing them
to our prof, only to discover that many had been solved & submitted
before by others.

| ended up submitting 12 solutions in all because | had been scooped on 7
occasions. Remember, the easy problems got done first, so if your early
efforts got scooped then the remaining problems were much harder!

| was quite frustrated at the time, even after managing to submit my 5
solutions. But with every passing year, | realise that there were important
lessons in all this, far more valuable than the algebraic geometry that I'd
learned in the course.

Why mention any of this now? This prof was Jerrold Tunnell, made famous
by the Langlands-Tunnell theorem, which formed a key ingredient in
Wiles's proof of Fermat's last theorem.

I've just learned from @AlexKontorovich that Prof Tunnell passed away a
few days ago. | haven't even exchanged email with him in well over a
decade, but somehow the loss seems personal



https://twitter.com/AlexKontorovich

Heron Triangles

Heron of Alexandria

‘Hpwv

17th-century German depiction of Hero
Born c. 10 AD

Died c. 70 AD (aged around 60)

Citizenship Alexandria, Roman Egypt
Known for Aeolipile
Heron's fountain
Heron's formula
Vending machine
Scientific career

Fields Mathematics
Physics
Pneumatic and hydraulic
engineering

A triangle with rational sides and rational area is called a Heron (or
Heronian) triangle, presumably in connection with Heron’s formula
for triangle area, which appeared in his Metrica of AD 60:

1
A= Z\/4a2b2 — (a? + b% — c?%)?

where a, b and c are the triangle sides.

Brahmagupta (C7") constructed all such triangles as those with
sides proportional to
a =n(m?+ k?)

b = mn?+ k?) =
c = (m+n)(mn—k?)
where m, n and k are positive integers satisfying _
m>n>1, mn > k? > 1, =
and gcd(m,n, k) =1
E.g. (m,n,k) = (7,6,5) gives (a,b,c) = (444, 427,221) |
with area 46410.
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Digression: plotting Heron triangles

Given (a,b,c) we want to plot the triangle with the minimum
of fuss and bother. So, like this:

P

(0,0) (a,0)

a?+b?%—c?

Now P = (bcost,bsint) = ( ,b sin t) by cosine rule.

24 p2_2\2
And sint = \/1 — (%) = ﬁ\/élazbz — (a? + b% — ¢2)2

1 .
= — X 4 X area A of triangle
2ab

SoP=i(a2 + b2% — 2, 44)

Note that b and c could be square roots and still be plotted with
rational points

(a,b,c) = (444, 427, 221)



Pythagorean triples

A right triangle with rational sides a <b < c is Heron since area is p ab.

All such triangles have also been constructed (by Euclid) as those with sides proportional to

a =m?—n?
b=2mn
c = m? + n?
where m, n are positive integers satisfying
m >n and gcd(m,n) =1

E.g. (m,n) = (7,6) gives (a,b,c) = (13, 84, 85), with area 546.

Brahmagupta’s construction, for comparison:
a =n(m? + k?)
b =mn?+ k?)
c = (m+n)(mn—k?)
where m, n and k are positive integers satisfying
m>n2>>1, mn > k? > 1,
and gcd(m,n, k) = 1.

Exercise: find m,n,k giving right triangle (13, 84, 85).
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The oldest unsolved problem in mathematics?

A positive integer is congruent if it is the area of some right rational triangle

200

546 J 46410

100 200 300 400

Congruent: area of (13, 84, 85) Not congruent: no right rational triangle
has this area

How do we know 46410 is not congruent? (We will see later). We are looking for a practical test to determine if a given
positive integer is congruent or not.

°2JTHE ON-LINE ENCYCLOPEDIA

136
1
20 “The congruent number problem, the
HEPEHOF INTEGER SEQUENCES ® ool o
10221121 written history of which can be traced back
founded in 1964 by N. J. A. Sloane at least a millennium, is the oldest unsolved
| _ I Search | o major problem in number theory, and
(Greetings from The On-Line Encyvelopedia of Integer Sequences!) . . v
perhaps in the whole of mathematics.
AQ03273 Congruent numbers: positive integers k for which there exists a night triangle having areak and % J Ohn H. Coates

rational sides.

(Formerly M3747T)
5, 6, 7, 13, 14, 15, 2@, 21, 22, 23, 24, 28, 29, 38, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54,
55, 56, 68, 61, B2, 63, 65, &9, B, 1, 77, 78, 79, 88, B84, B85, 86, 87, B8, 92, 93, 94, 95, 95, 1681,
182, 183, 109, 11e, 111, 112, 116, 117, 118, 119, 128, 124, 125, 126 (list: graph: refs: listen: history: text:

internal frrmath



Non-square-free congruent numbers are not very interesting

c “/r

ar

a a/r

013627 THE ON-LINE ENCYCLOPEDIA
gf?E?S OF INTEGER SEQUENCES®

10 2211 21

(Greetings from The On-Line Encvelopedia of Integer Sequences!)

founded in 1964 by N. ]. A. Sloane

|| Search | Hints

AD0B991 Primitive congruent numbers.
(Formerly M3748)

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 3@, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 78,
71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 1@1, 182, 183, 1e9, 11e, 111, 118, 119, 127, 133, 134, 137,

138, 141, 142, 143, 145, 145, 151, 154, 157, 158, 159 (list; sraph; refs; listen; history; text; internal format



Why congruent?

The word ‘congruent’ comes from Fibonacci’s use of the term ‘congruum’ to mean the common
different in a sequence of three rational squares in arithmetic progression.

2

Any such sequence, u?, v?, w2, with common difference ns? corresponds to a right rational

w—-u w+u 2v

triangle , ,— with area n.
S S S

For example, the sequence (31/6)2, (41/6)%, (49/6)% is in arithmetic progression with

20 41

: . 3 .
common difference 5 X 22 and corresponds to the triangle (E’?’?) with area 5.

Fibonacci (C13%™) discovered that 7 is congruent (5 and 6 were known to 10t century
Muslim scholars). He asserted without proof that 1 is not congruent.

Fermat, 1640, proved that 1 is not congruent, and therefore that no rational square is
congruent. He observed that this implies that the equation x* + y* = 1 has no non-
trivial rational solutions, perhaps inspiring his Last Theorem.

By the way, Fermat also proved that there is no 4-term arithmetic progression
consisting of rational squares.

f_f'
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Which numbers are congruent?

We can construct all Heron triangles and all Pythagorean triples. But this does not give a
@ practical method for determining if a given positive integer is congruent!
3_

E.g. 157 is congruent, but the smallest right rational triangle having area 157 has legs

~6803298487826435051217540 b= 411340519227716149383203
‘= 411340519227716149383203 '~ 21666555693714761309610

which is not going to appear quickly during an exhaustive search!

‘Smallest’ triangle implies there are larger ones. Indeed any congruent number is the area of
@ infinitely many right rational triangles.

1_

Right rational triangles having area 5

®
®
@ ©
DL‘/—‘-_—T—-- : . . —1

60 80 100 120




Nevertheless...
A Trillion Triangles

September 22, 2009 —- Mathematicians from North America, Europe,
Australia, and South America have resolved the first one t71llion cases of an
ancient mathematics problem. The advance was made possible by a clever
technique for multiplving large numbers. The numbers involved are so
enormous that if their digits were written out by hand they would stretch to
the moon and back The biggest challenge was that these numbers could not
even fit into the main memory of the available computers, so the researchers
had to make extensive use of the computers’ hard drives.

Press release 1in
MSWord or plaip texd
Version en espaifjol

) ) ) ] ) Computer detail§: ho
According to Brian Conrey, Director of the American Institute of to
}u{arhe_marics:_"ﬂld problems like this may seem obscure, but they generate a multiply large ngmbe
lot of interesting and useful research as people develop new ways to attack

them."

The problem, which was first posed more

than a thousand vears ago, concerns the

areas of night-angled triangles. The

surprisingly difficult problem is to

determine which whole numbers can be 5

1 9
Congruent, number theta cocfficients to 10

Robert Bradshaw, William B. Hart T David Harvey,
Gonzalo Tornaria I Mark Watkins ¥

September 23, 2009

Abstract

We report on a computation of congruent numbers, which subject to
ihe Birch and Swinnerton-Dyer conjecture is an accurate list up to 10
The computation involves multiplying large theta series as per Tunnell
(1983). The first method, which we describe in some detail, uses a mul-
timodular disk based technique [or multiplying polynomials out-of-core
which minimises expensive disk access by keeping data truncated. The
second technigue uses “Bailey’s four-step” Fast Fourier method in combi-
nation with compression of the data to disk in intermediate stages.

the area of a right-angled triangle whose

sides are whole numbers or fractions. The

area of such a triangle is called a

"congruent number." For example, the [
3-4-5 right triangle which students see in
geometry hasarea 12 =3 =4=6,s0615a
congruent number. The smallest congruent
number 15 5, which 1z the area of the nght
triangle with sides 3/2, 20/3, and 41/6.

4
The 3-4-3 triangle has area 6.

) ) Math details:
The first few congruent numbers are 5,6, 7, 13, 14, 15, 20, and 21. Many triansles and elliptic
congruent numbers were known prior to the new calculation. For example, —
every number in the sequence 3, 13, 21, 29, 37, __ 15 a congruent number. o
But other similar looking sequences, like 3, 11, 19, 27, 35, .., are more

mysterious and each number has to be checked individually.

Incidentally...

= At one point the American Institute of Mathematics (founded in 1994 with financing
from John Fry) was supposed to move from its location behind a Frv’s Electronics store
to a castle in Morgan Hill modeled on the Alhambra (see here). This never worked out,
and last vear Frv's Electronics declared bankruptcy. The latest news is that next vear

ATM will move to Caltech, for more see here.

Not Even Wrong blog, April 18, 2022



So how did Bradshaw et al do it (up to BSD)?

Tunnell’s Theorem Let n be a square-free positive integer and denote by S ,(a, b, ¢) the number of sol-
utions in integers, x.y.z, of the equation ax* + by* + cz= = n. Then a necessary condition for n to be a

congruent number is that S,(2.1.8)=25,(2.1.32) nodd

and S ,,(8,2,16) = 25,(8.2.64) neven.
Moreover; if the Birch and Swinnerton-Dyer conjecture is true then this condition is also sufficient.

1is not a congruent number because 2x% + y? 4+ 8z% = 1 and 2x% + y? + 32z% =1
both have one solution in integers, namely (0, +1,0). Our example

from earlier:
157 is (up to BSD) congruent because 2x? + y? + 8z2 = 157 has twice as many integer

solutions as 2x2 + y% + 32z% = 157. Namely zero.

26 is not congruent because 8x% + 2y? + 16z% = 26 has 12 solutions

(+1,+1,+1), (+1,£3,0) while 8x* 4 2y? + 64z° = 26 has 4: (+1,£3,0) . -/ 46410
34 is congruent (up to BSD) because 8x% + 2y + 16z% = 34 has 8 solutions Not cor_‘gruent:
(0,%+3,+1), (£2,+1,0) while 8x?% + 2y2 + 64z°% = 34 has 4: (+2,£1,0). Sie410(8,2,16) = 256

S46410(8,2,64) = 160



Whereof Birch and Swinnerton-Dyer?

Equations in degree 1 — SOLVED (linear equations) 40

Equations in degree 2 — SOLVED (conics) 301

20+

Equations in degree 3 — WIDE OPEN EVEN IN THE SIMPLEST CASE
y2=x3+ax+b

10+

i.e. elliptic curves — R R

_l[l_

However, we know 204
* The rational points, together with a point at infinity, form a finitely generated |
abelian group under an appropriately defined arithmetic 30

* The points of finite order form a finite subgroup

* The points of infinite order form a subgroup isomorphic to Z"

* How to calculate r, the rank of the elliptic, provided that Birch and
Swinnerton-Dyer’s conjectural calculation is valid.

—40-



Heron triangles and elliptic curves

There is a deep connection between elliptic curves and rational triangles with integer area

'Elliptic Curve Arithmetic

Double P: take tangent
at P; find intersection with
curve; take mirror image.
(NOTE For point on x
axis, vertical tangent meets
curve at co: 2P = QO so P
has order 2.)

Add P and Q: take line
joining P and Q; find in-
tersection with curve; take
mirror image.

THEOREM OF THE DAY

The Goins—Maddox—Rusin Theorem on Heron Triangles A positive integer n can be expressed as the
area of a triangle with rational sides if and only if. for some nonzero, rational number p, the elliptic curve

E(") . y* = x(x — np)(x + n/p), has a rational point which is not of order 2.

3
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Congruent numbers and elliptic curves

For right-angled Heron triangles, corresponding to congruent numbers, we have a very simple
mapping between triangles and elliptic curves, shown here for the six rational right triangles of
area 5 shown earlier:

curve y? = x3 — n?x,
7 { forn =05.

® | Rational points on the
@ 3

20 40 60




Birch and Swinnerton-Dyer and
Jerrold Bates Tunnell

Tunnell was able to extract, for the special case of the elliptic curves y2 = x3 — n?x, an explicit
version of the rank calculation of BSD for the case r = 0, i.e. the subgroup of rational points on the
curve of infinite order is trivial, meaning there can be no congruent numbers for the given value of n.
This took the form of the degree 2 equations specified in his theorem. Enough is known about BSD for
these equations to give a necessary condition for rank zero.
Forty years later, going the other way is one of the Clay Mathematics Institute’s S1 million prizes!
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