THEOREM OF THE DAY

Willans' Formula The number of primes not exceeding a positive integer n may be calculated as
 was quick to point out that
it did not contribute to our understanding of the distribution of the primes (being merely a repackaging of Wilson's Theorem). However, it remains an elegant and much-quoted means of accessing small values of $\pi(n)$ without explicit reference to primality testing (as in, say, the Sieve of Eratosthenes).

We have slightly adapted the original statement of this formula:

$$
\pi(n)=-1+\sum\left\lfloor\cos ^{2}\left(\frac{1+(k-1)!}{2 k} \tau\right)\right\rfloor
$$

($\lfloor x\rfloor$ denotes the greatest integer not exceeding x) which is a direct corollary of Wilson's Theorem: $(1+(k-1)!) \tau / 2 k$ is a multiple of $\tau / 2$ if and only if k is prime, so the $\left\lfloor\cos ^{2}\right\rfloor$ will be 1 for primes and zero for composite numbers. Replacing cosine with sine and $\tau / 2$ with $\tau / 4$ produces the same result. But while cosines of non-multiples of $\tau / 2$ approach 1 , the sines of non-multiples of $\tau / 4$ approach zero (see the plots on the left). For small angles $x, \sin x \approx x$, so summing over composite k contributes

$$
\begin{aligned}
\sum \sin ^{2}\left(\frac{\tau}{4 k}\right) & \approx \frac{\tau^{2}}{16} \sum \frac{1}{k^{2}} \\
& <\frac{\tau^{2}}{16}\left(\frac{\tau^{2}}{24}-1-\frac{1}{4}-\frac{1}{9}\right) \\
& <1
\end{aligned}
$$

invoking the Basel Problem and excluding the first few non-composites. This means we can move the $\lfloor\ldots\rfloor$ outside the \sum, and finally we swap $\sin ^{2}$ with \cos for our statement of Willans' formula by using the appropriate double-angle formula.

Web link: recursed.blogspot.co.uk/2013/01/no-formula-for-prime-numbers.html. Click here for an example of Willans' formula in action.
Further reading: The Little Book of Bigger Primes by Paulo Ribenboim, 2nd edition, Springer-Verlag, 2004, Chapter 3.

