THEOREM OF THE DAY

Willans' Formula The number of primes not exceeding a positive integer n may be calculated as

We have slightly adapted the original statement of this formula:

$$\pi(n) = -1 + \sum \left\lfloor \cos^2 \left(\frac{1 + (k-1)!}{2k} \tau \right) \right\rfloor,$$

(|x| denotes the greatest integer not exceeding x) which is a direct corollary of Wilson's Theorem: $(1 + (k-1)!)\tau/2k$ is a multiple of $\tau/2$ if and only if k is prime, so the $|\cos^2|$ will be 1 for primes and zero for composite numbers. Replacing cosine with sine and $\tau/2$ with $\tau/4$ produces the same result. But while cosines of non-multiples of $\tau/2$ approach 1, the sines of non-multiples of $\tau/4$ approach zero (see the plots on the left). For small angles x, $\sin x \approx x$, so summing over composite *k* contributes

$$\sum \sin^2 \left(\frac{\tau}{4k}\right) \approx \frac{\tau^2}{16} \sum \frac{1}{k^2} \\ < \frac{\tau^2}{16} \left(\frac{\tau^2}{24} - 1 - \frac{1}{4} - \frac{1}{9}\right) \\ < 1,$$

invoking the Basel Problem and excluding the first few non-composites. This means we can move the |...| outside the Σ , and finally we swap \sin^2 with \cos for our statement of Willans' formula by using the appropriate double-angle formula.

it did not contribute to our understanding of the distribution of the primes (being merely a repackaging of Wilson's Theorem). However, it remains an elegant and much-quoted means of accessing small values of $\pi(n)$ without explicit reference to primality testing (as in, say, the Sieve of Eratosthenes).

Web link: recursed.blogspot.co.uk/2013/01/no-formula-for-prime-numbers.html.

Further reading: The Little Book of Bigger Primes by Paulo Ribenboim, 2nd edition, Springer-Verlag, 2004, Chapter 3.

