THEOREM OF THE DAY

A Theorem of Anderson, Cameron and Preece on Groups of Units *Let n be a prime of the form* 6*m* + 1,

m > 1, and let α and β be the roots of $x^2 + 3x + 3$ over \mathbb{Z}_n (which exist by quadratic reciprocity). Then the group \mathbb{U}_n of units of \mathbb{Z}_n can be written as a direct product in the form $\mathbb{U}_n = \langle x \rangle_a \times \langle x + k \rangle_b \times \langle x + 2k \rangle_c$, for some $x, k \in \mathbb{Z}_n$ and $\{a, b, c\} = \{2, 3, m\}$, if and only if $m \equiv 1$ or $5 \pmod{6}$ and one of the following occurs:

1. $ord(\alpha) = m$; then $x = -\alpha - 2$ and $k = \alpha + 1$.

2. $ord(\alpha/2) = m$; then $x = \alpha + 1$ and $k = -\alpha/2 - 1$.

3. $ord(\alpha) = n - 1$ and $ord(\beta) = (n - 1)/2$; then $x = 2\alpha + 3$ and $k = -\alpha - 2$.

An element x of \mathbb{Z}_n is a unit if gcd(x,n) = 1. The units form a group \mathbb{U}_n under multiplication mod n because each unit x has an order, ord(x), such that $x^{ord(x)} = 1$ (so $x^{-1} = x^{\operatorname{ord}(x)-1}$). The powers of a unit x form a cyclic subgroup of \mathbb{U}_n , which we can denote by $\langle x \rangle_{\text{ord}(x)}$. A collection of such subgroups whose orders multiply to give $|\mathbb{U}_n|$ and whose pairwise intersection is $\{1\}$ defines the whole group \mathbb{U}_n via direct product. To illustrate for n prime, when every nonzero element of \mathbb{Z}_n is a unit, suppose n = 43. Then ord(6) = 3 (since $6^3 = 216 \equiv 1 \pmod{43}$), ord(42) = 2 and ord(35) = 7. The direct product $\langle 6 \rangle_3 \times \langle 42 \rangle_2 \times \langle 35 \rangle_7$ consists of the Cartesian product $\{1, 6, 36\} \times \{1, 42\} \times \{1, 35, 21, 4, 11, 41, 16\}$, which may be enumerated as $(1, 1, 1), (6, 1, 1), (6^2, 1, 1), (1, 42, 1), (1, 1, 35), (1, 1, 35^2), (1, 1, 35^3), \dots, (6^2, 42, 35^6),$ with elementwise multiplication, e.g. $(6,42,41) \cdot (36,42,11) = (1,1,21)$. This is indeed isomorphic to \mathbb{U}_{43} , the correspondence with the elements of \mathbb{Z}_{43} specified by multiplication of triple entries, e.g. $(6,42,41) \rightarrow 6 \times 42 \times 41 = 12 \pmod{43}$. The multiplication table is depicted on the right with the elements represented by colours. You can discern the subgroups $\langle 6 \rangle_3, \langle 42 \rangle_2$ and $\langle 35 \rangle_7$ in the top left corner. Where does $(35)_7$ come from? The roots of $x^2 + 3x + 3$ are $\left(-3 \pm \sqrt{-3}\right) \times 2^{-1}$. Now $2^{-1} = 22 \pmod{43}$ (because $2 \times 22 = 44 \equiv 1 \pmod{43}$) and $\sqrt{-3} \equiv 13 \pmod{43}$ (because $13^2 = 169 \equiv 40 \equiv -3 \pmod{43}$); quadratic reciprocity tells us that -3 is a square modulo any prime congruent to 1 mod 6). So we can take $\alpha = (-3-13)\times 22 =$ $-352 \equiv 35 \pmod{43}$. Since ord(35) = 7, part (1) of the theorem applies, with $x = -35 - 2 \equiv 6 \pmod{43}$ and k = 36.

And where does the quadratic $x^2 + 3x + 3$ come from? We observe merely that if it has root α in \mathbb{Z}_n then $(\alpha + 1)^3 = \alpha(\alpha^2 + 3\alpha + 3) + 1 = 1$, and so $\operatorname{ord}(\alpha + 1) = 3$ in \mathbb{Z}_n .

Donald Arthur Preece collaborated with Ian Anderson (2011) and Peter Cameron (2013) in the subtle and intricate task of constructing \mathbb{U}_n for various n in terms of units in arithmetic progression, of interest in experimental design theory as well as in number theory and combinatorics.

Web link: arxiv.org/abs/1111.3507 (section 2) builds on www.emis.de/journals/INTEGERS/papers/m52/m52.Abstract.html (e.g. Theorem 7). **Further reading:** *Design of Comparative Experiments* by R.A. Bailey, Cambridge University Press, 2008.