THEOREM OF THE DAY

Frieze’s Theorem on Expected Minimum Tree Length If the edges of the complete graph on \(n \) vertices are assigned weights independently uniformly at random from the interval \([0, 1]\) then the expected length of a minimum-weight spanning tree tends, as \(n \to \infty \), to \(\zeta(3) \approx 1.20206 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{w})</td>
<td>0.74</td>
<td>0.81</td>
<td>1.00</td>
<td>1.04</td>
<td>1.12</td>
<td>1.07</td>
<td>1.00</td>
<td>1.09</td>
<td>1.2018</td>
</tr>
</tbody>
</table>

In the complete graph, \(K_n \), each pair from \(n \) vertices, \(n \geq 1 \), is joined by an edge. The above table was produced using the Maple `GraphTheory` package: for \(3 \leq n \leq 10 \), 25 copies of \(K_n \) were generated, with edges given random weights from the interval \([0, 1]\); and the mean length \(\bar{w} \) calculated of a minimum spanning tree (a subset of edges connecting all vertices for the least possible total edge weight; individual examples for \(n = 3, 4, 5, 6 \) and 10 are shown on the right). The experiment was repeated with 25 copies of \(K_{1000} \); the mean value minimum spanning tree length approximated \(\zeta(3) \) to 3 decimal places.

An \(n \)-vertex spanning tree is a subset of \(n - 1 \) edges; an arbitrary such subset in our weighted \(K_n \) will have expected total weight \((n - 1) \times \frac{1}{3} \); so it is not even obvious that minimum spanning tree length should remain bounded as \(n \to \infty \), let alone that its expected value, as discovered by Alan Frieze in 1985, should be a constant as intriguing as \(\zeta(3) \) (whose reciprocal, to mention just one other property, is the proportion, as \(n \to \infty \), of coprime triples in the set \(\{1, \ldots, n\} \)).

\[
\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \cdots
\]
