THEOREM OF THE DAY

Von Neumann's Minimax Theorem For any finite, two-player, zero-sum game the maximum value of the minimum expected gain for one player is equal to the minimum value of the maximum expected loss for the other; moreover each player has a mixed strategy which realises this equality.

This is a lovely application of linear programming duality. *A*'s strategies are 'choose red' and 'choose blue'; suppose she attaches probabilities p_1 and p_2 to these choices, respectively, with $p_1 + p_2 = 1$: this is her mixed strategy. Suppose *B* chooses red and blue with probabilities q_1 and q_2 , respectively, with $q_1 + q_2 = 1$. In the positive version of the game, represented above left by G^+ , suppose that *B*'s maximum expected loss is v_B . Then *B* is trying minimise v_B subject to $3(r+b)q_1+2bq_2 \le v_B$ and $2rq_1 + 3(r+b)q_2 \le v_B$. Divide through by v_B : since we made our game positive, v_B must be positive and this will preserve the inequalities. Letting $x_i = q_i/v_B$ we have $3(r+b)x_1 + 2bx_2 \le 1$ and $2rx_1 + 3(r+b)x_2 \le 1$. Meanwhile, $x_1 + x_2 = (q_1 + q_2)/v_B = 1/v_B$, so *B* minimises v_B by maximising $x_1 + x_2$; and hey presto! we have a standard linear programme. This is solved above left, and by duality *B*'s minimum maximum expected loss equals *A*'s maximum minimum expected gain and is given by the reciprocal of the top-right value in the simplex tableau: X/4(r+b). For the original game we must subtract 2(r+b) giving the *value* of the original game as $(r-b)^2/4(r+b)$. This is plotted above right: we see that Alice never loses and Bob breaks even only if the red and blue prices are equal.

John von Neumann's theorem appears in a classic 1928 paper in which he single-handedly invented Game Theory.

Web link: math.ucr.edu/home/baez/games/games_1.html (von Neumann's theorem appears in lecture 20). Further reading: *Game Theory: Mathematical Models of Conflict* by A.J. Jones, Woodhead Publishing, 2000.

1. Lemme 2. Theorem 3. Cooling