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A Non-Regular Continued Fraction for 7
In 1998 Jerry Lange gave a beautiful new continued fraction for x:
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A very short elegant proof was subsequently found by Douglas Bowman and Lange published this
with two other proofs in 1999. From a general theorem of Leonhard Euler we derive:
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An infinite summation (due to the 15th century Indian scholar Kerala Gargya Nilakantha) gives:
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Bowman applies Euler’s transformation, using a;, = 2k(2k + 1)(2k + 2), to produce Lange’s continued
fraction. You can check that a; — a;_; = 24k*> = 6.(2k)> for k > 2, and a; = 6.2%. So:
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Of course we can simply double both sides of Lange’s continued fraction to get a non-regular con-
tinued fraction for 7 but this leaves a 2 in the first numerator and makes the result inelegant. The
appropriate course of action would seem to be to double both sides of equation (I):
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Now put b, = k(2k + 1)(2k + 2), with by — by_y = 12k* for k > 2, and b; = 12. So:
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Et voila—everything has doubled!
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