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A Non-Regular Continued Fraction for τ
In 1998 Jerry Lange gave a beautiful new continued fraction for π:
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A very short elegant proof was subsequently found by Douglas Bowman and Lange published this

with two other proofs in 1999. From a general theorem of Leonhard Euler we derive:
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An infinite summation (due to the 15th century Indian scholar Kerala Gargya Nilakantha) gives:
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Bowman applies Euler’s transformation, using ak = 2k(2k + 1)(2k + 2), to produce Lange’s continued

fraction. You can check that ak − ak−1 = 24k2
= 6.(2k)2 for k ≥ 2, and a1 = 6.22. So:
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Of course we can simply double both sides of Lange’s continued fraction to get a non-regular con-

tinued fraction for τ but this leaves a 2 in the first numerator and makes the result inelegant. The

appropriate course of action would seem to be to double both sides of equation (1):
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Now put bk = k(2k + 1)(2k + 2), with bk − bk−1 = 12k2 for k ≥ 2, and b1 = 12. So:
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Et voila—everything has doubled!
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