Rewley House June 2013 Tau vs. Pi

A Non-Regular Continued Fraction for τ

In 1998 Jerry Lange gave a beautiful new continued fraction for π :

$$
\pi=3+\frac{1^{2}}{6+\frac{3^{2}}{6+\frac{5^{2}}{6+\ldots}}} .
$$

A very short elegant proof was subsequently found by Douglas Bowman and Lange published this with two other proofs in 1999. From a general theorem of Leonhard Euler we derive:

$$
\frac{1}{a_{1}}-\frac{1}{a_{2}}+\frac{1}{a_{3}}-\ldots+\frac{(-1)^{k-1}}{a_{k}}=\frac{1}{a_{1}+\frac{a_{1}^{2}}{a_{2}-a_{1}+\frac{a_{2}^{2}}{a_{3}-a_{2}+\frac{a_{3}^{2}}{\ldots+\frac{a_{k-1}^{2}}{a_{k}-a_{k-1}}}}}} \text {, e.g. } \frac{1}{a_{1}}-\frac{1}{a_{2}}=\frac{1}{a_{1}+\frac{a_{1}^{2}}{a_{2}-a_{1}}} \text {, etc. }
$$

An infinite summation (due to the 15th century Indian scholar Kerala Gargya Nilakantha) gives:

$$
\begin{equation*}
\frac{\pi-3}{4}=\frac{1}{2.3 .4}-\frac{1}{4.5 .6}+\frac{1}{6.7 .8}-\ldots=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k(2 k+1)(2 k+2)} . \tag{1}
\end{equation*}
$$

Bowman applies Euler's transformation, using $a_{k}=2 k(2 k+1)(2 k+2)$, to produce Lange's continued fraction. You can check that $a_{k}-a_{k-1}=24 k^{2}=6 .(2 k)^{2}$ for $k \geq 2$, and $a_{1}=6.2^{2}$. So:

$$
\frac{\pi-3}{4}=\frac{1}{6.4+\frac{2^{2} \cdot 3^{2} \cdot 4^{2}}{6.4^{2}+\frac{4^{2} \cdot 5^{2} \cdot 6^{2}}{6.6^{2}+\frac{6^{2} \cdot 7^{2} \cdot 8^{2}}{6.8^{2}+\ldots}}}} \text { or } \pi=3+\frac{4}{6.4+\frac{2^{2} \cdot 3^{2} \cdot 4^{2}}{6 \cdot 4^{2}+\frac{4^{2} \cdot 5^{2} \cdot 6^{2}}{6 \cdot 6^{2}+\frac{6^{2} \cdot 7^{2} \cdot 8^{2}}{6 \cdot 8^{2}+\ldots}}}}=3+\frac{1^{2}}{6+\frac{3^{2}}{6+\frac{5^{2}}{6+\ldots}}} .
$$

Of course we can simply double both sides of Lange's continued fraction to get a non-regular continued fraction for τ but this leaves a 2 in the first numerator and makes the result inelegant. The appropriate course of action would seem to be to double both sides of equation (1):

$$
\begin{equation*}
\frac{\tau-6}{4}=2\left(\frac{1}{2.3 .4}-\frac{1}{4.5 .6}+\frac{1}{6.7 .8}-\ldots\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k(2 k+1)(2 k+2)} . \tag{2}
\end{equation*}
$$

Now put $b_{k}=k(2 k+1)(2 k+2)$, with $b_{k}-b_{k-1}=12 k^{2}$ for $k \geq 2$, and $b_{1}=12$. So:

$$
\frac{\tau-6}{4}=\frac{1}{12+\frac{1^{2} \cdot 3^{2} \cdot 4^{2}}{12 \cdot 2^{2}+\frac{2^{2} \cdot 5^{2} \cdot 6^{2}}{12 \cdot 3^{2}+\frac{3^{2} \cdot 7^{2} \cdot 8^{2}}{12 \cdot 4^{2}+\ldots}}}} \quad \text { or } \tau=6+\frac{4}{12+\frac{1^{2} \cdot 3^{2} \cdot 2^{2} \cdot 2^{2}}{12 \cdot 2^{2}+\frac{2^{2} \cdot 5^{2} \cdot 2^{2} \cdot 3^{2^{2}}}{12 \cdot 3^{2}+\frac{3^{2} \cdot 7^{2} \cdot 2^{2} \cdot 4^{2}}{12 \cdot 4^{2}+\ldots}}}=6+\frac{2^{2}}{12+\frac{6^{2}}{12+\frac{10^{2}}{12+\ldots}}} ~}
$$

Et voila-everything has doubled!

References

L.J.Lange, "An elegant continued fraction for π ", American Mathematical Monthly, 106 (5) 1999, 456-458.
R. Roy, "The discovery of the series formula for π by Leibniz, Gregory and Nilakantha", Mathematics Magazine, 63 (5) 1990, 291-306.

