
The Beardwood-Halton-Hammersley Theorem Let {X1, . . . ,Xn}, n ≥ 1, be a set of random variables
in Rd, independently and identically distributed with bounded support. Then the length Ln of a shortest
TSP tour through the points Xi satisfies

Ln/n
(d−1)/d→ βd

∫
Rd

f (x)(d−1)/ddx, with probability 1, as n→ ∞,

where f(x) is the absolutely continuous part of the distribution of theXi and βd is a constant which
depends on d but not on this distribution.

The easiest (2-dimensional) case of the theorem has theXi uniformly distributed in the
unit square: they have bounded support (the distribution iszero outside a bounded re-
gion), the integrand becomes 11/2 = 1 and the integral, being the volume of a unit cube,
evaluates to 1. So the theorem says that a uniform distribution of n points in the unit
square will, ‘almost surely’, be joined in a shortest Travelling Salesman Problem [TSP]
circuit, or ‘tour’, whose length is asymptotic toβ2

√
n, asn → ∞. More generally, to

any continuous random variableX there corresponds, by definition, aprobability density
function, f , whose integral over an interval is the probability thatX takes a value in that
interval. In the theorem, the ‘absolutely continuous part’of the distribution of theXi can
be thought of, roughly, as a version off which excludes ‘spikes’ in the distribution of
theXi, i.e., measure zero subsets ofRn which occur with non-zero probability.

The well-known Concorde TSP-solving program (www.tsp.gatech.edu/concorde.html)
is shown in the screen shot on the right being applied to a TSP problem based on the
well-known logarithmic distribution of prime numbers: theprobability that an integer
n is prime being asymptotic to 1/ logn. Specifically, 2102 consecutive integers were
arranged in rows of 210; and of these a total of 214 were found to prime numbers and
were marked as vertices (based on a depiction of the discovery of 10 consecutive primes
in arithmetic progression:anthony.d.forbes.googlepages.com/10primes.htm). Concorde
calculated an optimal tour with length 2287 units. Althoughthese vertices certainly do
not come from sampling a uniform distribution, we can still get some kind of an estimate
for β2 as though they were: 2287/(

√
214× 210) ≈ 0.74. The best current estimates,

based on simulations, range from 0.7119 to 0.7124.
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Further reading: The Traveling Salesman Problem: a Computational Studyby D.L. Applegate, R.E. Bixby, V. Chv́atal and W.J. Cook, Princeton
University Press, 2006. Chapter 1 can be previewed here:press.princeton.edu/chapters/s8451.pdf(2.44MB, but worth it for the pictures alone!).


