THEOREM OF THE DAY

Fisher's Inequality If a balanced incomplete block design is specified with parameters (v, b, r, k, λ) then $v \leq b$.

SUM			~	fx	*	V	=M	MULT	(C3:Q	12;T3	AC17)																														
	AB	С	D		E	F	G	Н	I	J	K		L	М	N	0	Р	Q	R	S	T	U	V	W	X	Y,	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO
1 2	_	BO	B	1 1	B2	B3	B4	B5	B6	B 7	B	8 I	B9	B10	B11	B12	B13	B14			TO	T1	T2	T3	T4	15	T6	T 7	T8	Т9			TO	Tl	T2	T3	T4	T5	T6	T 7	T 8	T9
3	TO	1	1		1	1	1	1	0	0			0	0	0	0	0	0		B		1	1	1	0	0	0	0	0	0		TO	6	2	2	2	2	2	2	2	2	2
47~	11	1	1		0	0	0	0	1	1	1		1	0	0	0	0	0	>	B	1	1	0	0	1	1	0	0	0	0		Tl	2	6	2	2	2	2	2	2	2	2
5	Т2	1	0		1	0	0	0	1	0	0		0	1	1	1	0	0	X	B	1	0	1	0	1	0	1	0	0	0	=	Т2	2	2	6	2	2	2	2	2	2	2
6	Т3	1	0		0	1	0	0	0	1	0		0	1	0	0	1	1		B	1	0	0	1	0	0	0	1	1	0		T 3	2	2	2	6	2	2	2	2	2	2
7	Т4	0	1	n j	1	0	0	0	0	0	1		0	0	1	0	1	1		B	1	0	0	0	0	1	0	1	0	1		T4	2	2	2	2	6	2	2	2	2	2
8	Т5	0	1		0	0	1	0	0	0	0		1	1	0	1	1	0		B	1	0	0	0	0	0	1	0	1	1		Т5	2	2	2	2	2	6	2	2	2	2
9	T6	0	0		1	0	0	1	0	1	0		1	0	0	1	0	1		B	0	1	1	0	0	0	0	1	1	0		T6	2	2	2	2	2	2	6	2	2	2
10	T 7	0	0		0	1	1	0	1	0	1		0	0	0	1	0	1		B	0	1	0	1	0	0	1	0	0	1		T 7	2	2	2	2	2	2	2	6	2	2
11	T 8	0	0	1	0	1	0	1	1	0	0		1	0	1	0	1	0		B	0	1	0	0	1	0	0	1	0	1		T8		2	2	2	2	2	2	2	6	2
12	Т9	0	0		0	0	1	1	0	1	1		0	1	1	0	0	0		B	0	1	0	0	0	1	1	0	1	=N	MULT	(C3	:Q1	2;T3	AC	17)	2	2	2	2	2	6
13																				B1	0	0	1	1	0	1	0	0	0	1												
14		v	b		r	k	λ		Row Ti, Column $\mathbf{Bj} = 1$ if and											B1	0	0	1	0	1	0	0	0	1	1												
15		10) 15	5	6	4	2		only if treatment Ti is in block Bj										B1	0	0	1	0	0	1	1	1	0	0													
16																				B1	0	0	0	1	1	1	0	0	1	0												
17																				B1.	4 0	0	0	1	1	0	1	1	0	0												

In a balanced incomplete block design, or **BIBD**, a set of v treatments are selected, with repetition, to form b blocks, each being a set of cardinality k, where k < v(whence 'incomplete'), in such a way that

1. every treatment occurs in exactly r blocks ('first order balance'; implies the equality bk = rv); and

2. every unordered pair of treatments occurs in exactly λ blocks ('second order balance'; implies $\lambda(v-1) = r(k-1)$ and $r > \lambda$).

A BIBD may be represented by an incidence matrix M, as illustrated above left in the OpenOffice Calc screenshot; if this is multiplied by its transpose M^{T} (centre) then the balance conditions are represented in the resulting $v \times v$ matrix, MM^{T} (right), which has r in each diagonal positions and λ everywhere else (encircled we see how the r = 6 blocks containing treatment T1 match, exactly $\lambda = 2$ times, those containing treatment T5).

Add to row 1 of MM^{T} each other row. Subtract column 1 in the resulting matrix from each other column. The result is the matrix shown on the right whose determinant is the product of its diagonal elements, which is $(r+(v-1)\lambda)(r-\lambda)^{v-1}$. Since $r > \lambda$ this is non-zero; in other words rank $(MM^{T}) = v$. But rank $(MM^{T}) \le rank(M) \le min(v, b)$. So we must have $\min(v, b) = v$, i.e. $v \le b$, and this proves Fisher's Inequality. The inequality allows us, for example, to bound block size k, given v and λ : condition 1 above gives $k \leq r$ whence condition 2 gives $\lambda(v-1) \geq k(k-1)$, and now solving for v gives $k \leq \frac{1}{2}(1 + \sqrt{1 + 4\lambda(v - 1)})$.

Ronald Fisher's fundamental property of BIBDs dates from 1940. The above proof is due to Raj Chandra Bose (1949).

Web link: math.mit.edu/~lmlovasz/oddtowngood.pdf Further reading: Combinatorial Designs and Tournaments by Ian Anderson, Clarendon Press, 1997. Created by Robin Whitty for www.theoremoftheday.org

 $r + (v - 1)\lambda$

 $r - \lambda = 0$

... 0

 $0 \quad r-\lambda \quad 0 \quad \dots$

0

0