
# **THEOREM OF THE DAY**

**The Borsuk-Ulam Theorem** Let  $f: S^n \to \mathbb{R}^n$  be a continuous map. Then some pair of antipodal points on  $S^n$  is mapped by f to the same point in  $\mathbb{R}^n$ .



For n = 2, this theorem can be interpreted as asserting that some point on the globe has precisely the same weather as its antipodal point. The 'weather' has to mean two variables ( $\mathbb{R}^2$ ) that vary continuously (f) on the surface  $(S^2)$  of the earth. Perhaps temperature and humidity



## Forecasts from http://worldweather.wmo.int

### Ulan Ude

#### Weather Forecast Issued at 12:49 (Local time) 28 Aug 2008 Temperature °C Date Weather Minimum Maximum 29 Aug FINE DRY 6 19 (Fri) 30 Aug 4 19 FINE DRY (Sat) 31 Aug FINE DRY 6 23 (Sun)

### **Punta Arenas**

| Date              | Temperature <sup>9</sup> C |         | Weather |
|-------------------|----------------------------|---------|---------|
|                   | Minimum                    | Maximum |         |
| 28 Aug<br>( Thu ) | -4                         | 0       | SHOWERS |
| 29 Aug<br>( Fri ) | -3                         | 1       | SHOWERS |
| 30 Aug<br>( Sat ) | -2                         | 2       | SHOWERS |

Maps from www.lib.utexas.edu/maps

"While chatting at the Scottish Café with Borsuk, an outstanding Warsaw topologist, he [Ulam] saw in a flash the truth of what is now called the Borsuk-Ulam theorem. Borsuk had to commandeer all his technical resources to prove it."

Web link: math.hmc.edu/su/research-papers-and-preprints/ (paper 2). The Ulam story is from www.emis.de/newsletter/current/current9.pdf. Further reading: Basic Topology by M.A. Armstrong, Springer-Verlag New York Inc, 1997, Chapter 9.



either

will

you

where

better

me!

location