
THEOREM OF THE DAY NUMBER 233

The Circle Area Theorem The area of a circle of radius r and circumference C is identical

to that of a right triangle of height r

and base C.

Ancient Greek mathematics had no notion of ‘formula’: facts about geometrical measure were stated as equalities involving different shapes. The Greek’s

‘method of exhaustion’ proved such equalities by showing that some infinite construction forced the equality by contradiction. The equivalence of circle

area AC and triangle area AT was thus proved by showing that AC ≤ AT and then showing that AC < AT was impossible. The infinite construction is

the engine of the method. Here a regular polygon is inscribed in our circle of radius r and is triangulated. The triangles remain ‘equiareal’ provided

height and base are preserved and are thus formed into a right triangle whose area is identical to that of the regular polygon. And now, as the number of

sides of the polygon increase, so must the base of our right triangle... With modern algebra we express the conclusion as AC = AT =
1
2
Cr and calculate

1
2
Cr = 1

2
rτ × r = 1

2
τr2, recognising the result as the special case θ = τ of the area formula 1

2
r2θ for a sector subtended by angle θ.

Archimedes (3rd century BC) established his circle area equality in an essay ‘Measurement of a circle’ in which he also famously used
infinite sequences of inscribed and circumscribed polygons to approximate the ratio of circumference to diameter. Euclid’s proof of his
Proposition 2, Book XII (c.300BC) is a similar application of the method of exhaustion but Archimedes attributes the method to Eudoxus
a century earlier. Web link: www.ams.org/samplings/feature-column/fc-2012-02

Further reading: The Works of Archimedes edited by Thomas Little Heath, CUP reprint, 2009.
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